

LIPMAN PTY LTD

Detailed Site Investigation

1H Hospital Road, Concord West NSW

E25996.E02_Rev0 26 June 2023

Document Control

Report Title: Detailed Site Investigation; 1H Hospital Road, Concord West NSW

Report No: E25996.E02_Rev0

Copies	Recipient
1 Soft Copy (PDF – Secured, issued by email)	LIPMAN Pty Ltd Level 6, 66 Berry St NORTH SYDNEY NSW 2060
1 Original (Saved to Digital Archives)	El Australia Pty Ltd Suite 6.01, 55 Miller Street, Pyrmont NSW 2009

Author

Technical Reviewer

Let DUR

Ray Liu Environmental Engineer CEnvP(General): No 1685 Revision Details		Pedro Balbachevsky Principal Environmenta CEnvP (SC Specialist):	Pedro Balbachevsky Principal Environmental Engineer CEnvP (SC Specialist): No SCC41198	
		Date	Amended By	
Draft	For client review	26 June 2023	-	

Rev.0

_

26 June 2023

© 2023 El Australia (El) ABN: 42 909 129 957

This report is protected by copyright law and may only be reproduced, in electronic or hard copy format, if it is copied and distributed in full and with prior written permission by El.

-

TABLE OF CONTENTS

Page Number

EX	ECUT	TIVE SUMMARY	I
1.	INT 1.1 1.2 1.3 1.4	RODUCTION Background and Purpose Proposed Development Regulatory Framework Project Objectives	1 1 1 1
	1.5	Scope of Works	2
2.	SITI 2.1 2.2 2.3 2.4 2.5	E DESCRIPTION Property Identification, Location and Physical Setting Local Land Use Regional Setting Groundwater Bore Records and Local Groundwater Use Site Walkover Inspection	3 3 4 4 4
3.	SITI 3.1 3.2 3.3 3.4 3.5	E HISTORY AND SEARCHES Land Titles Information Historical Aerial Photography Review Council Information SafeWork NSW Dangerous Goods Register Records NSW EPA Online Records	6 6 7 7 7
4.	4.1 4.2 4.3 4.4 4.5 4.6 4.7	NCEPTUAL SITE MODEL Summary of Site History Potential Contamination Sources Emerging Contaminants (PFAS Assessment) Potential Contaminants Risk Assessment Receptors Data Gaps	8 9 9 9 10 11 11 11
5.	ME 5.1 5.2 5.3 5.4 5.5 5.6 5.7	THODOLOGY Sampling and Analysis Quality Plan Data Quality Objectives Data Quality Indicators Sampling Rationale Assessment Criteria Soil Sampling Groundwater Sampling	13 13 13 17 17 18 19 20
6.	DAT	A QUALITY ASSESSMENT	22

7.	RESULTS 23				
	7.1	Soil Fie	Id Results	23	
		7.1.1	Sub-Surface Conditions	23	
		7.1.2	Field Observations	23	
	7.2	Ground	water Field Results	24	
		7.2.1	Monitoring Well Construction	24	
		7.2.2	Field Observations	24	
	7.3	Laborat	ory Analytical Results	25	
		7.3.1	Soil Analytical Results	25	
		7.3.2	Groundwater Analytical Results	26	
8.	SITE	CHAR	ACTERISATION	27	
	8.1	Subsurf	face Conditions	27	
	8.2	Soil Imp	pacts	27	
	8.3	Acid Su	Ifate Soil Impacts	27	
	8.4	Ground	water Impacts	29	
9.	CON	CLUSIC	ON	30	
9. 10.	CON REC	ICLUSIC OMMEN	ON NDATIONS	30 31	
9. 10. 11.	CON REC STA	ICLUSIC OMMEN TEMEN	ON NDATIONS T OF LIMITATIONS	30 31 32	
9. 10. 11. REI	CON REC STA ^T FERE	ICLUSIC OMMEN TEMEN NCES	ON NDATIONS T OF LIMITATIONS	30 31 32 33	
9. 10. 11. REI ABI	CON REC STA ⁻ FERE BREV	ICLUSIC OMMEN TEMEN NCES IATION	ON NDATIONS T OF LIMITATIONS	30 31 32 33 35	
9. 10. 11. REI ABI	CON REC STA FERE BREV J1.1	OMMEN TEMEN NCES (IATION Quality	NDATIONS T OF LIMITATIONS	30 31 32 33 35 14	
9. 10. 11. REI AB	CON REC STA FERE BREV J1.1 J1.2	OMMEN OMMEN TEMEN NCES VIATION Quality Calcula	NDATIONS T OF LIMITATIONS S Assurance / Quality Control Program tion of Relative Percentage Difference	30 31 32 33 35 14 16	
9. 10. 11. REI ABI	CON REC STA FERE BREV J1.1 J1.2 J2.1	OMMEN TEMEN NCES (IATION Quality Calcula Field Q	NDATIONS T OF LIMITATIONS S Assurance / Quality Control Program tion of Relative Percentage Difference A/QC	30 31 32 33 35 14 16 17	
9. 10. 11. REI ABI	CON REC STA FERE J1.1 J1.2 J2.1 J2.2	OMMEN OMMEN TEMEN NCES VIATION Quality Calcula Field Q, Field D	NDATIONS T OF LIMITATIONS S Assurance / Quality Control Program tion of Relative Percentage Difference A/QC bata Quality Indicators	30 31 32 33 35 14 16 17 18	
9. 10. 11. REI ABI	CON REC STA FERE J1.1 J1.2 J2.1 J2.2 J2.3	OMMEN TEMEN TEMEN NCES IATION Quality Calcula Field Q Field D Conclu	NDATIONS TOF LIMITATIONS S Assurance / Quality Control Program tion of Relative Percentage Difference A/QC ata Quality Indicators sion for the Field QA/QC	30 31 32 33 33 35 14 16 17 18 18	
9. 10. 11. REI ABI	CON REC STA FERE J1.1 J1.2 J2.1 J2.2 J2.3 J2.4	OMMEN OMMEN TEMEN NCES VIATION Quality Calcula Field Q, Field D Conclu Labora	NDATIONS TOF LIMITATIONS S Assurance / Quality Control Program tion of Relative Percentage Difference A/QC Pata Quality Indicators sion for the Field QA/QC tory QA/QC	30 31 32 33 35 14 16 17 18 18 18	
9. 10. 11. REI AB	CON REC STA FERE J1.1 J1.2 J2.1 J2.2 J2.3 J2.4 J2.5	CLUSIC OMMEN TEMEN NCES VIATION Quality Calcula Field QJ Field D Conclu Labora Conclu	NDATIONS TOF LIMITATIONS S Assurance / Quality Control Program tion of Relative Percentage Difference A/QC vata Quality Indicators ision for the Field QA/QC tory QA/QC sions for the Laboratory QA/QC	30 31 32 33 35 14 16 17 18 18 18 18 18	

Schedule of Tables

Table 2-1	Site Identification	3
Table 2-2	Local Land Use	3
Table 2-3	Regional Setting	4
Table 3-1	Summary of Historical Property Ownership	6
Table 3-2	Summary of Aerial Photograph Observations	7
Table 3-3	POEO Public Register record	8
Table 4-1	PFAS Decision Tree	9
Table 4-2	Emerging or Controlled Chemicals	10
Table 4-3	Assessment of Potential Contamination Risk	11
Table 4-4	Preliminary Conceptual Site Model	12
Table 5-1	Summary of Project Data Quality Objectives	14
Table 5-2	Data Quality Indicators	17
Table 5-3	Adopted Investigation Levels for Soil and Groundwater	18
Table 5-4	Summary of Soil Sampling Methodology	19
Table 5-5	Summary of Groundwater Sampling Methodology	20
Table 6-1	Quality Control Process	22
Table 7-1	Generalised Sub-Surface Profile	23
Table 7-2	Groundwater Physiochemical Parameters	24
Table 7-3	Summary of Soil Analytical Results	25
Table 7-4	Summary of Groundwater Analytical Results	26
Table 8-1	Summary of the Laboratory Analytical Results	28

Appendices

- **APPENDIX A FIGURES**
- **APPENDIX B TABLES**
- APPENDIX C PROPOSED DEVELOPMENT
- **APPENDIX D GROUNDWATER BORE SEARCH**
- **APPENDIX E SITE PHOTOGRAPHS**
- **APPENDIX F BOREHOLE LOGS**
- **APPENDIX G FIELD DATA SHEETS**
- **APPENDIX H CHAIN OF CUSTODY AND SAMPLE RECEIPT DOCUMENTATION**
- APPENDIX I LABORATORY ANALYTICAL REPORTS
- APPENDIX J QA/QC ASSESSMENT
- APPENDIX K LABORATORY QA/QC AND DQOS
- **APPENDIX L TITLE SEARCH DOCUMENTS**

EXECUTIVE SUMMARY

El Australia (El) was engaged by LIPMAN Pty Ltd ('the client') to conduct a Detailed Site Investigation (DSI) for a portion of the property located at 1H Hospital Road, Concord West NSW ('the site').

The site is located 11 km north-west of the Sydney central business district (CBD), within the local government area (LGA) of City of Canada Bay. The site is located within the property identified as Lot 10 in Deposited Plan (DP) 574013, covering an area of approximately 2,700m² (the entire Lot 10 covers a total area of 19.11 ha). At the time of the investigation, the subject site was located within Concord Hospital and currently occupied by an existing building used for Endocrinology laboratories in its southern portion and an at grade car park in its northern portion, with associated internal driveway, walkways and lawn.

The purpose of this investigation was to determine the environmental conditions (contamination status) of the site, in support of a development application to City of Canada Bay Council. This DSI enables the developer to meet obligations under the *State Environmental Planning Policy (Resilience and Hazards)* (2021), for the assessment and management of contaminated soil and/or groundwater, should these be identified.

Based on the supplied plans and information provided by client, the site redevelopment will involve the demolition of the existing structures (building and external car park), followed by the construction of a threestorey building, with no basements proposed. Soil disturbances are expected to be limited to surface trimming for levelling purposes and locally deeper excavations for footings, crane pads and service trenches.

The primary objectives of this investigation were to:

- Evaluate the potential for site contamination on the basis of historical land uses, anecdotal and documentary evidence;
- Investigate the degree of any soil and groundwater contamination (if present), by means of intrusive sampling and laboratory analysis for the relevant contaminants of concern;
- Provide a conclusion regarding the suitability of the site for its proposed use; and
- Make recommendations for the appropriate management of any impacted soils and/or groundwater, should site contamination be confirmed.

Findings

The key findings of this DSI were as follows:

- At the time of site inspection, the site was occupied by a single-storey fire service building and an open space car park.
- The northern portion of the site (car park) was covered by asphalt pavement, which appeared to be in good condition, with minimal cracking.
- There was no visual evidence of underground storage tanks (UST) or aboveground storage tanks (AST) on site. Evidences of USTs were, however, observed on the neighbouring site to the east (a service station).
- No ash, slag or other foreign materials (including ACM) were observed in samples collected from fill or natural soils.
- No contaminants of concern (primary metals, BTEX compounds, PAHs, OCPs, OPPs and PCBs) were
 reported in soils at concentrations above the adopted ecological or health-based criteria.
- Contaminant concentrations in groundwater were reported below the adopted criteria, with the exception
 of the following:
 - Cadmium, copper, nickel and zinc were reported in groundwater at concentrations marginally above the adopted marine water criteria. These concentrations, however, were considered to be consistent with the disturbed urban background conditions, instead of a result of site-specific impacts.

- The following data gaps were identified by the current conceptual site model:
 - The conditions of the soils within the footprint of the existing building are still unknown;
 - The presence and extent of per- and poly-fluoroalkyl substances (PFAS) in groundwater is unknown.

Conclusion

Based on the findings obtained from this DSI, and with consideration of EI's *Statement of Limitations* (**Section 11**), EI concludes that the site can be made suitable for the potential future site redevelopment, provided the recommendations detailed below are implemented.

Recommendations

El provides the following recommendations:

- Before commencement of demolition works, a Hazardous Materials Survey (HMS) shall be completed by a suitably qualified consultant, to identify any hazardous materials present within the existing building fabrics.
- The HMS should guide subsequent building and infrastructure demolition at the site, to prevent release of hazards materials.
- Additional intrusive investigation should be conducted, to close the remaining data gaps at the subject site, including:
 - Soil characterisation within the footprint of the current building (if accessible); and
 - Groundwater investigation targeting additional COPCs.
- Preparation and implementation of a Remediation Action Plan (RAP), if remediation is required based on results obtained from the additional intrusive investigations mentioned above. The RAP should also include:
 - Waste management plan for any surplus materials (including potential virgin excavated natural materials (VENM) excavated and removed from site in accordance with NSW EPA (2014); and
 - A sampling and analysis quality plan (SAQP) for the post-remedial validation assessment, aimed at confirming that site remediation was effective.
- Implementation of the remediation and validation works for the site, as outlined in the RAP.
- Preparation of a validation report by a suitably qualified environmental consultant, confirming site suitability for its proposed land use.

1. INTRODUCTION

1.1 Background and Purpose

El Australia (El) was engaged by LIPMAN Pty Ltd ('the client') to conduct a Detailed Site Investigation (DSI) of the land parcel located at 1H Hospital Road, Concord West NSW ('the site').

The site is located 11 km north-west of the Sydney central business district (CBD), within the local government area (LGA) of City of Canada Bay, as shown in **Figure 1**, **Appendix A**. The site is identified as Lot 10 in Deposited Plan (DP) 574013, and covers a total area of approximately 19.11ha (The investigation area subject to this report is only small portion within the site boundary and estimated area of 2,700m², as depicted in **Figure 2**, **Appendix A**. At the time of the investigation, the subject site was located within Concord Hospital and currently occupied by an existing building used for Endocrinology laboratories in the southern portion and an at grade car park in the northern portion with associated internal driveway, walkways and lawn.

The purpose of this investigation was to determine the environmental conditions (contamination status) of the site, in support of a development application to City of Canada Bay Council. This DSI enables the developer to meet obligations under the *State Environmental Planning Policy* (Resilience and Hazards) (2021), for the assessment and management of contaminated soil and/or groundwater, should these be identified.

1.2 Proposed Development

Based on the supplied plans (**Appendix C**) and on information provided by client, the site redevelopment will involve the demolition of the existing structures (building and external car park), followed by the construction of a three-storey building, with no basements proposed.

Soil disturbances are expected to be limited to surface trimming for levelling purposes and locally deeper excavations for footings, crane pads and service trenches.

1.3 Regulatory Framework

The following regulatory framework and guidelines were considered during the preparation of this DSI:

- Contaminated Land Management Act 1997 (the CLM Act 1997);
- Protection of the Environment Operations Act 1997 (the POEO Act 1997);
- Environmental Planning and Assessment Act 1979 (the EP&A Act 1979);
- State Environmental Planning Policy (Resilience and Hazards) 2021;
- NSW EPA (2017) Guidelines for the NSW Site Auditor Scheme;
- NSW EPA (2020) Consultants Reporting on Contaminated Land: Contaminated Land Guidelines; and
- NSW EPA (2022) Sampling Design Guidelines Part 1 Application;NEPC (2013) Schedule B(1) Guideline on Investigation Levels for Soil and Groundwater and Schedule B(2) Guideline on Site Characterisation, in the National Environmental Protection (Assessment of Site Contamination) Measure 1999, amended in 2013.

1.4 Project Objectives

The objectives of this investigation were to:

- Evaluate the potential for site contamination on the basis of historical land uses, anecdotal and documentary evidence;
- Investigate the degree of any soil and groundwater contamination (if present), by means of intrusive sampling and laboratory analysis for the relevant contaminants of concern;

- Provide a conclusion regarding suitability of the site for the proposed use; and
- Make recommendations for the appropriate management of any impacted soils and/or groundwater, should site contamination be confirmed.

1.5 Scope of Works

To achieve the above objectives, the following scope of works was completed:

Desktop Study

- A review of relevant (hydro)geological and soil landscape maps for the project area;
- A review of the site history, based on land title records, environmental risk and planning documentation, aerial photographs (dating back to 1943) and property files archived by City of Canada Bay Council;
- Searches of public registers maintained by the New South Wales Environment Protection Authority (NSW EPA) for statutory notices and licensing agreements issued under the Contaminated Land Management Act 1997 and Protection of the Environment Operations Act 1997;
- A search of the List of NSW Contaminated Sites Notified to the EPA;
- A review of the previous environmental reports issued for the site (if any); and
- A search of NSW WorkCover (SafeWork NSW) records for information relating to possible underground tank approvals and locations.

Fieldwork and Laboratory Analysis

- A review of existing underground services on-site, utilising *Before-You-Dig* plans and electro-magnetic equipment operated by a licensed services locator;
- A detailed site walkover inspection;
- Drilling of boreholes at thirteen (13) locations (BH1M, BH2 to BH11, BH9, BH9M and BH12M), distributed in a generally triangular systematic grid pattern across accessible parts of the site. As per borehole logs presented in **Appendix F**, BH9 and BH9M were drilled as separate boreholes, for soil and groundwater sampling purposes, respectively.
- Multiple level soil sampling within fill and natural layers, at each of the boreholes;
- Construction of three groundwater monitoring bores drilled to a maximum depth of 7.6 metres below ground level (mBGL) (or refusal), at both upgradient and downgradient areas of the site. Groundwater monitoring bores were constructed as per standard environmental protocols to investigate the potential for groundwater contamination, and migration of contaminants offsite;
- Completion of a groundwater monitoring event (GME), including measurement of standing water levels (SWLs) and representative sampling at the newly installed groundwater monitoring wells (BH1M, BH9M, and BH12M); and
- Laboratory analysis of selected soil and groundwater samples for relevant contaminants of potential concern (COPCs), as determined by the desktop study and by field observations.

Data Analysis and Reporting

Data interpretation and preparation of this DSI report, according to NSW EPA (2020) requirements.

2. SITE DESCRIPTION

2.1 Property Identification, Location and Physical Setting

The site identification details and associated information are presented in **Table 2-1**. The site locality and assessment area are illustrated in **Figures 1** and **2**, **Appendix A**.

Attribute	Description	
Street Address	1H Hospital Road, Concord West NSWNSW	
Location Description	iption The site is located approximately 11.4km north-west of the Sydney CBD, bound by hospital buildings and/or internal access road (north, south, east and west). The site comprises the northeastern portion of the hospital land located at 1H Hospital Road, Concord West, NSW	
Site Coordinates	Approximate Northern-eastern corner of site:	
	 Easting: -33.835414 	
	 Northing: 151.096578 	
	(Source: http://maps.six.nsw.gov.au)	
Site Area	Approximately 2,700 m ²	
Lots and DP	Lot 10 in DP 574013.	
State Survey Marks	One state survey marks are situated within close proximity (<250m) to the site:	
	SS166069: at Hospital Road (157m northeast);	
	(Source: http://maps.six.nsw.gov.au)	
LGA	City of Canada Bay Council	
Parish	Concord	
County	Cumberland	
Current Zoning	SP2: Hospital/Infrastructure	
	(Canada Bay Local Environmental Plan 2013)	

Table 2-1 Site Identification

2.2 Local Land Use

The site is situated within a general residential area, as described in **Table 2-2**. The local sensitive receptors within close proximity to the site are also identified in this table.

Table 2-2	Local Land Use	
Direction	Land Use Description	Sensitive Receptor (and distance from site)
North	Hospital Buildings Kokoda track memorial walkway Brays Bay	Public User (within site / vicinity of site) Kokoda track memorial walkway (approx. 200m) Brays bay (approx. 280m)
South	Hospital Buildings Landscape/ outdoor grass area Yaralla Bay	Public User (within site / vicinity of site) Landscape/ outdoor grass area - staff and patients (approx. 50-80m) Yaralla bay (approx 180m)
East	Hospital Buildings Landscape/ outdoor grass area Yaralla Bay Rivendell school	Public User (within site / vicinity of site) Landscape/ outdoor grass area - staff and patients (approx. 130m) Yaralla Bay (approx 250m) Rivendell school (approx 350m northeast)

eiaustralia

2.3 Regional Setting

The topography, (hydro)geology and soil landscape information for the site are summarised in Table 2-3.

Table 2-3 Regional	Setting
Attribute	Description
Topography	During the site walkover, the site topography was observed to be generally gentle, with minor west- facing slopes. The surface elevations (including surrounding area) slightly slopes from 8.0 to 10.0 metres Australian Height Datum (mAHD). (Ref. https://www.mecone.com.au/mosaic/)
Site Drainage	Likely to be consistent with the general slope of the site. Stormwater is expected to be collected in stormwater pits and piped to the municipal collection system.
Regional Geology	The Department of Mineral Resources Sydney1:100,000 Geological Series Sheet 9130 (DMR, 1991) indicates the site is underlain by (Rwa), which consists of black to dark-grey shale and laminate.
Soil Landscape	The Soil Conservation Service of NSW Soil Landscapes of the Sydney 1:100,000 Sheet (Bannerman and Hazelton, 1990) indicates that the site overlies a Blacktown (bt) residual landscape. This landscape is characterised by gently undulating rises on Wianamatta Group shales and Hawkesbury shale. Local relief to 30 m, slopes are usually<5%. Broad rounded crests and ridges with gently inclined slopes. Cleared eucalypt woodland and tall open-forest (wet sclerophyll forests).
Acid Sulfate Soil (ASS) Risk	The site is mapped on the <i>Canada Bay Local Environmental Plan 2013</i> (map 001_ Acid Sulfate Soil Maps) as class 5. Acid Sulfate Soils are not typically found in Class 5 areas. Areas classified as Class 5 are located within 500 meters of adjacent class 1, 2, 3 or 4 areas. The <i>Prospect-Parramatta Acid Sulfate Soil Risk Map</i> (1:25,000 scale; Naylor, 1997) indicates the ASS is possibly present on site and that further assessment or management is required. Based on the above, an ASS investigation was conducted as part of this DSI and discussed in the following sections.
Nearest Surface Water Feature	Yaralla Bay (250 m away from the site, to the south-east) Parramatta River (1.1 km away from the site, to the east)
Groundwater Flow Direction	Inferred to be in a south direction, towards Yaralla Bay and ultimately into the Parramatta river.

2.4 Groundwater Bore Records and Local Groundwater Use

An online search for groundwater bores registered with WaterNSW was conducted by EI on 08 June 2023 (Ref. <u>https://realtimedata.waternsw.com.au/water.stm</u>). The search revealed no registered bores within a 500m radius of the site. Searched map is attached in **Appendix D**.

The closest groundwater bores are located approximate 900m southwestern of the site, but no further detailed information was available at the time of writing this report.

2.5 Site Walkover Inspection

Observations were recorded during a walkover inspection at the site conducted on 23 and 24 May 2023. These observations are summarised below and photographs taken during the inspection are presented in **Appendix E**. The site inspection was limited to external areas on site. The building was found to be occupied and internal access was not provided.

Page | 4

- At the time of site inspection, the site was occupied by a single-storey fire service building and an open space car park.
- The northern portion of the site (car park) was covered by asphalt pavement, which appeared to be in good condition, with minimal cracking.
- Some internal roads, pedestrian and landscape areas are also part of the subject investigation area.
- No visual evidences of potential asbestos-containing materials (ACM) (or any other hazardous building materials) were observed on the surface of the site, nor were used on external building surfaces of the site structures.
- No visual evidences of chemical handling and/or storage were observed on the site.
- There was no visual evidence of underground storage tanks (USTs) or aboveground storage tanks (ASTs) on site. USTs were observed on the neighbouring service station, to the east.

3. SITE HISTORY AND SEARCHES

3.1 Land Titles Information

A historical land titles search was conducted through InfoTrack Pty Ltd ('InfoTrack'). Copies of relevant documents resulting from this search are presented in **Appendix L**.

Refer to Figures 3-1 and Table 3-1 for summarised relevant information.

Figures 3-1 Site Area

Period of Ownership	Registered Proprietor(s) and Occupations (where documented)
Lot 2 in DP 1280788	1 H Hospital Road, Concord NSW
1933 to 1940	Eadith Campbell Walker
1940	Vested in His Majesty as Crown Lands
1940 - 1992	The Commonwealth of Australia (Acquired for Defence Purposes)
1992 to 1993	Repatriation Commission
1993 to Date	# Health Administration Corporation

denotes current owner

3.2 Historical Aerial Photography Review

The historical aerial photographs reviewed as part of this DSI were obtained from on-line resources, including:

- 1943, 1955, 1965, 1970, 1986, 199 and 2005 provided on-line by <u>http://sixmaps.com.au;</u>
- 2011 and 2023, provided on-line by Google Earth.

A summary of the findings is given in Table 3-2 .

Photograph	Site Description Surroundings Description		Site Land Use
1943	A building is visible at the southern portion of the site. The remaining of the site is vacant (likely used as a car park).	Surrounding areas consist of residential dwellings.	Commercial
1955	The site appeared to be unchanged from the previous image.	The surroundings appeared to be unchanged from the previous image.	Commercial
1965	The site appeared to be unchanged from the previous image.	Some structures located to the northwest were removed. Trees can be observed on the northeast.	Commercial
1970	The site appeared to be unchanged from the previous image.	The surroundings appeared to be unchanged from the previous image.	Commercial
1986	The site appeared to be unchanged from the previous image.	A car park can be observed in the northwest.	Commercial
1994	The site appeared to be unchanged from the previous image.	The surroundings appeared to be unchanged from the previous image.	Commercial
2005	The site appeared to be unchanged from the previous image.	Some buildings located in the north and northeast were demolished and two new buildings were constructed in the north.	Commercial
2011	The site appeared to be unchanged from the previous image.	Previous buildings located in the north, south and east were apparently demolished and replaced by new buildings.	Commercial
2023	The site appeared to be unchanged from the previous image.	Previous buildings located in the north, south and east were upgraded with solar panels on their roofs. Some of the buildings located in the west were likely demolished and replaced by new buildings. A construction site can be observed located to the west.	Commercial

Table 3-2 Summary of Aerial Photograph Observations

3.3 Council Information

An application to access property files archived by City of Canada Bay Council was requested by EI. Information from City of Canada Bay Council was still pending at the time of writing this report. Should pertinent information be identified upon receipt of council records, an addendum to this DSI will be prepared and issued.

3.4 SafeWork NSW Dangerous Goods Register Records

An application to access SafeWork NSW licensing records relating to possible on-site storage of dangerous goods was lodged during this DSI. At the time of writing this report, no information had been received from SafeWork NSW. If any relevant information is later received by EI, this DSI should be amended.

3.5 NSW EPA Online Records

Searches of public registers maintained by the NSW EPA for statutory notices and licensing agreements issued under the *Contaminated Land Management Act 1997* (CLM Act 1997) and *Protection of the Environment Operations Act 1997* (POEO Act 1997) were conducted by EI for this DSI.

Record of Notices Under Section 58 of CLM Act 1997

An on-line search of the contaminated land public record was conducted on 1 May 2023. The contaminated land public record is a searchable database of:

• Orders made under Part 3 of the CLM Act 1997;

- Notices available to the public under Section 58 of the CLM Act;
- Approved voluntary management proposals under the CLM Act 1997 that have not been fully carried out and where the approval of the NSW EPA has not been revoked;
- Site audit statements provided to the NSW EPA under Section 53B of the CLM Act 1997 that relate to significantly contaminated land;
- Where practicable, copies of anything formerly required to be part of the public record; and
- Actions taken by the NSW EPA under Section 35 or 36 of the Environmentally Hazardous Chemicals Act 1985 (EHC Act 1985).

The search found that neither the site nor the surrounding lands within a 250m radius were subject to any regulatory notices relevant to the above legislations.

List of NSW Contaminated Sites Notified to EPA

A search through the *List of NSW Contaminated Sites Notified to the EPA* under Section 60 of the CLM Act 1997 was conducted on d. This list is maintained by the NSW EPA and includes properties on which contamination has been identified, but not deemed to be impacted significantly enough to warrant regulation. The site had not been notified as contaminated to the NSW EPA (i.e. was not included in the list), and neither were any properties within 250m of the site.

POEO Public Register

A search of the *Protection of the Environment Operations Act 1997* public register was conducted on 25 June 2023. This public register contains records related to environmental protection licences, applications, notices, audits, pollution studies and reduction programs.

The search confirmed that the surrounding lands within close proximity (<250m) were not subject to any licensing agreements / notices / programs relevant to the above legislation. However, the encompassing hospital land has been notified as contaminated to the NSW EPA, as detailed in Error! Reference source not found. Therefore, the surrounding areas within the hospital land can be considered as potential source of contamination migrating to the site.

		•			
Site Name	Number	Address	Activity Type	Activity Status	Issued Date
Sydney South West Area Health Service	11269	Hospital Road, Concord West	Waste Activities/ Hazardous, Industrial or Group A Waste Generation or Storage, <100 – 500T	No longer in force	25 June 2004
Sydney South West Area Health Service	1038371	Hospital Road, Concord West	s.58 Licence Variation/ Hazardous, Industrial or Group A Waste Generation or Storage	Issued/ No longer in force	25 June 2004

			-	
Table 3-3	POEO	Public	Register	record

4. CONCEPTUAL SITE MODEL

In accordance with NEPC (2013) Schedule B2 – Guideline on Site Characterisation, EI developed a conceptual site model (CSM) that assessed plausible linkages between potential contamination sources, migration pathways and receptors. The CSM also provides a framework for identifying data gaps in the existing site characterisation.

4.1 Summary of Site History

The site history review (**Section 3**) indicated that most existing buildings on the site were constructed before 1943. The local surroundings comprised commercial and residential properties since before 1943.

4.2 Potential Contamination Sources

The potential contamination sources were considered to be the following:

- Former and current on-site commercial activities;
- Imported fill materials of unknown origin and quality;
- Hazardous building materials (including potential ACM) present within the site structures;
- Application of pesticides around building (footing) perimeters (for pest control);
- Leakage from vehicles in the parking areas; and
- Migration of mobile (liquid / vapour) contaminants from neighbouring, upgradient, commercial premises.

4.3 Emerging Contaminants (PFAS Assessment)

Per- and Poly-Fluoroalkyl Substances (PFAS)

NSW EPA (2017) requires that PFAS are considered when investigating land contamination. The probability of PFAS occurrence, which was based on considerations outlined in the *PFAS National Environmental Management Plan* (HEPA, 2020), is reviewed in **Table 4-1**. In this instance, the potential for PFAS to be present on-site ranged from low to high. However, since no groundwater samples were analysed for these compounds, PFAS characterisation remains as a data gap for the full characterisation of the site (**Section 4.7**).

Preliminary Screening	Probability of Occurrence ¹
Has an activity listed in HEPA (2020) ² as being associated with PFAS contamination occurred on-site? If so, list activity:	M-H Fire Service Buildings
Has an activity listed in HEPA (2020) ² as being associated with PFAS contamination occurred up-gradient or adjacent to the site? If so, list activity:	L-H Open space maybe used for fire service training
Did fire training involving the use of suppressants occur on-site between 1970 and 2010?	M-H Fire Service Buildings within site and historically potentially used for fire safety training
Did fire training occur up-gradient or adjacent to the site between 1970 and 2010? ³	L
Have "fuel" fires ever occurred on-site between 1970 and 2010? (e.g. ignition of fuel (solvent, petrol, diesel, kero) tanks?)	L
Have PFAS been used in manufacturing or stored on-site? ⁴	M-H Fire safety training
Could PFAS have been imported to the site in fill materials from a site with an activity listed in HEPA (2020)?	L
Could PFAS-contaminated groundwater or run-off have migrated on to the site?	L-M
Is the site or adjacent sites listed in the NSW EPA PFAS Investigation Program? 5	L
If the probability is medium or high in any of the rows, does the site analytical suite need to be optimised to include preliminary sampling and testing for PFAS in soil (including ASLP testing) and waters?	Yes

Table 4-1 PFAS Decision Tree

Note 1 Probability: L - low (all necessary documentation has been reviewed and there is no recorded instance or compelling rationale); M - moderate (all necessary documentation has been reviewed and there is potential evidence of a recorded instance with compelling rationale); H - high (all necessary documentation has been reviewed and there is evidence of a recorded instance with compelling rationale).

Note 2 Activities listed in Appendix B of HEPA (2020).

Note 3 Runoff from up-gradient PFAS use may impact surface water, soil, sediment and groundwater.

Note 4 PFAS is used wide range of industrial processes and consumer products, including in the manufacture of non-stick cookware, specialised garments and textiles, Scotchguard[™] and similar products (used to protect fabric, furniture, leather and carpets from oils and stains), metal plating and in some types of fire-fighting foam.

(https://www.nicnas.gov.au/chemical-information/factsheets/chemical-name/perfluorinated-chemicals-pfas)

Note 5 Refer to https://www.epa.nsw.gov.au/your-environment/contaminated-land/pfas-investigation-program.

Emerging Chemicals

The NSW EPA uses Chemical Control Orders (CCOs) as a primary legislative tool under the *Environmentally Hazardous Chemicals Act 1985*, to control chemicals of concern and limit their potential impact on the environment. Considerations for chemicals controlled by CCOs, and other potential emerging chemicals, are outlined in **Table 4-2**. In this instance, the potential for an emerging chemical of concern to be present on-site was deemed low, with the possible use of pesticides in building footings (near surface soils) and possible pesticides and PCBs present in the imported fill.

Table 4-2 Emerging or Controlled Chemicals

Chemicals of Concern (CCO or emerging)	Decision
Were aluminium smelter wastes used or stored on site (CCO, 1986)?	No
Do dioxin contaminated wastes (CCO, 1986) have the potential to impact the site? $^{\rm 1}$	No
Were organotin products (CCO, 1989) used or stored on site? ²	No
Were polychlorinated biphenyls (PCBs) used or PCB wastes (CCO, 1997) stored on-site? ³	Yes Possibility for PCBs to be present in imported fill.
Were scheduled chemical or wastes (CCO, 2004) used or stored? ⁴	Yes Possibility for pesticides applied to footings for pest control and/or present in imported fill.
Are other emerging chemicals suspected? 5	No
If Yes to any questions, has site sampling suite been optimised to include sampling for these chemicals of concern?	Yes

Note 1 From burning of certain chemicals, smelting or chemical manufacturing or fire on or near the site.

Note 2 From anti-fouling paints used or+ removed at boat and ship yards and marinas.

Note 3 From older transformer oils and electrical capacitors

Note 4 Twenty-four mostly organochlorine pesticides and industrial by-products

Note 5 Other chemicals considered as emerging (e.g. 1,4 dioxane; associated with some CVOC).

4.4 Potential Contaminants

The primary contaminants of potential concern (COPCs) for the site were considered to be:

- Priority Metals (PM) arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc;
- Total Recoverable Hydrocarbons (TRH);
- Monocyclic aromatic hydrocarbons Benzene, Toluene, Ethylbenzene, Xylenes (BTEX);
- Polycyclic Aromatic Hydrocarbons (PAH);
- Per- and Polyfluorinated Substances (PFAS);
- Organochlorine and Organophosphorus Pesticides (OCP / OPP);
- Polychlorinated Biphenyls (PCB);
- Asbestos.

4.5 Risk Assessment

An assessment of the potential contamination risks for the site is outlined in Table 4-3.

Potential Source	Impacted Medium	COPC	Risk of Contamination
Importation of fill of unknown origin and quality	Shallow soil	PM, TRH, BTEX, PAH, OCP, OPP, PCB and asbestos	Moderate Shallow filling was likely required on the site.
Application of pesticides	Near surface soil (building footing areas)	OCP, OPP	Low If present, pesticides are expected to be limited to shallow, building footprint soils.
Former and current on- site commercial activities	Soil	PM, TRH, BTEX, PAH, and PFAS	High Nearby fire service building.
Leakage from vehicles	Shallow soil	TRH and BTEX	Moderate The surface pavements were noted to be in poor condition, with major cracks and staining. However, impacts (if present) would be likely limited to shallow soils.
Migration from off-site sources	Soil Groundwater	PM, TRH, BTEX and PAH	Low to Moderate Encompassing hospital land has been notified as contaminated to the NSW EPA.
Hazardous building materials	Building fabrics Near surface soil	PM, asbestos	Medium Hazardous materials are expected on site, due to the old and weathered structures identified.

Table 4-3 Assessment of Potential Contamination Risk

4.6 Receptors

The following potential receptors of site contamination were identified:

- Current and future site users;
- Demolition and construction workers;
- Users of the adjacent land during construction;
- Future intrusive workers; and
- Ecological communities at Yaralla Bay and the Parramatta River.

4.7 Data Gaps

Based on the CSM derived for the site and the qualitative assessment of risks, the following data gaps still require closure before the site can be considered fully characterised:

- The conditions of the soils within the footprint of the existing building are still unknown;
- The presence and extent of per- and poly-fluoroalkyl substances (PFAS) in groundwater is unknown.

Table 4-4 Preliminary Conceptual Site Model

Potential Source	Impacted Media	Contaminants of Concern	Transport Mechanism	Exposure Pathway	Potential Receptor	Potential Risk of Complete Exposure Pathway
Imported fill of unknown origin and quality Application of pesticides Historical use of the site (including fire services)	Soil	PM, TRH, BTEX, PAH, OCP, OPP, PCB, asbestos, PFAS	Disturbance of surface and subsurface soils during site redevelopment, future site maintenance and future use of the site post redevelopment.	Ingestion Dermal contact Inhalation of particulates Inhalation of vapours	Current and future site users Demolition and construction workers Future intrusive workers Adjacent site users	Low The use of personal protective equipment (PPE) by construction and demolition workers is mandatory by SafeWork NSW.
Leakage from parked vehicles			Volatilisation of contamination from soil and diffusion to	Inhalation of vapours	Current and future site users	Low No VOC
Migration onto site			indoor air spaces.		Adjacent site users	exceedances were reported during this DSI.
	Groundwater	Dissolved PM, TRH, VOCs, BTEX, PAH, PFAS	Disturbance of surface and subsurface soils during site redevelopment, future site maintenance and future use of the site post redevelopment.	Inhalation of vapours Ingestion Dermal contact	Current and future site users Demolition and construction workers Future intrusive workers Adjacent site users	Moderate Potential contaminant sources are located upgradient of the site. Data gaps associated with the presence of PFAS in groundwater still remain.
			Migration of dissolved phase impacts in groundwater via diffusion and natural advection.	Biota uptake	Ecological communities at Yaralla Bay and the Parramatta River	Moderate Data gaps associated with the presence of PFAS in groundwater still remain.

5. METHODOLOGY

5.1 Sampling and Analysis Quality Plan

The sampling and analysis quality plan (SAQP) ensures that the data collected during environmental works are representative and provide a robust basis for assessment decisions. The SAQP for this DSI included the following:

- Data quality objectives (DQO), including a summary of the objectives of the DSI;
- Investigation methodology, including the media to be sampled, details of analytes and parameters to be monitored and a description of intended sampling points;
- Sampling procedures (including sample handling, preservation and storage);
- Field screening methods;
- Laboratory analysis methods; and
- Analytical quality assurance / quality control (QA/QC).

5.2 Data Quality Objectives

In accordance with the NEPC (2013) *Schedule B2 Guideline on Site Characterisation*, the USEPA (2006) *Data Quality Assessment* and NSW EPA (2017) *Guidelines for the NSW Site Auditor Scheme*, a seven step process (**Table 5-1**) was developed by the El investigation team, so that the appropriate levels of data quantity and quality needed for the specific requirements of the project could be achieved.

Table 5-1 Summary of Project Data Quality Objectives

DQO Step	Details
1. State the Problem Summarise the contamination problem that will require new environmental data, and identify the resources available to resolve the problem; develop a conceptual site model.	Proposed site redevelopment area is presented in Figure 2 , Appendix A . It will involve the demolition of the existing structures (building and external car park) and the construction of a three-storey building, with no basements proposed (Section 1.2). Soil disturbance is expected to be limited to surface trim for levelling purposes and locally deeper excavations for footings, crane pads and service trenches.
	The proposed development is equivalent to a generic NEPC (2013) land use setting of commercial (hospital). However, a NEPC (2013) land use setting of HIL-A (low density residential) was used for screening purposes, which is the most conservative. These screening levels were selected as the most appropriate due to the sensitive users involved (patients, children and elderly).
	This investigation was required to characterise the environmental conditions of the site, and enable the developer to meet their obligations under SEPP 2021 and CLM Act 1997, for the assessment and management of contaminated soil and/or groundwater. The findings of this DSI provide supportive information on the environmental conditions of the site, and allow the environmental consultant (EI) to determine its suitability for the proposed development.
2. Identify the Goal of the Study (Identify the decisions) Identify the decisions that need to be made on the contamination problem and the new environmental data required to make them.	 Based on the objectives outlined in Section 1.4, the decisions that need to be made were: Has the nature, extent and source of any soil and/or groundwater impacts onsite been defined? What impact do the site specific, geologic and hydrogeological conditions have on the fate and transport of any impacts that may be identified? Does the level of impact coupled with the fate and transport of identified contaminants represent an unacceptable risk to identified human and/or environmental receptors on or offsite? Does the collected data provide sufficient information to allow the suitability of the site to be determined, or selection and design of an appropriate remedial strategy, if necessary? If the data does not provide sufficient information, what data gaps require closure to enable the suitability of the site to be determined, or selection and design of an appropriate remedial strategy?
3. Identify Information Inputs (Identify inputs to decision) Identify the information needed to support any decision and specify which inputs require new environmental measurements.	 Inputs to the decision making process included: The proposed development and land use; Review of the previous investigation; National and NSW EPA guidelines made or approved under the <i>CLM Act 1997</i>; Observations during / from soil and groundwater sampling; and Laboratory analytical results for the selected soil and groundwater samples. At completion of the DSI, a decision is required regarding the suitability of the site for the proposed redevelopment, or if additional investigation is required to confirm that the site is suitable for that development or if remediation is required to make the site suitable.

DQO Step	Details
4. Define the Boundaries of the Study Specify the spatial and temporal aspects of the environmental media that the data must represent to support decision.	Lateral – The proposed development area, as shown on Figure 2 , Appendix A ; Vertical – Investigations were advanced to the depth of natural soils or rock, with a maximum intrusive investigation advanced depth of 7.6 metres below ground level (mBGL); Temporal – The results are valid for the day samples were collected and remain so as long as no changes occur in regards to site use, and contamination (if present) does not migrate onto the site from off-site sources.
5. Develop the Analytic Approach (Develop a decision rule) To define the parameter of interest, specify the action level, and integrate previous DQO outputs into a single statement that describes a logical basis for choosing from alternative actions.	 The decision rules for the investigation were: If the concentrations of contaminants in the soil and/or groundwater data exceed the adopted criteria, then assess the need to further investigate the extent of impacts onsite. Decision criteria for QA/QC measures are defined by the Data Quality Indicators (DQI) in Table 5-2.
6. Specify Performance or Acceptance Criteria (Specify limits on decision errors) Specify the decision-maker's acceptable limits on decision errors, which are used to establish performance goals for limiting uncertainties in the data.	 Specific limits for this project were in accordance with National and NSW EPA guidance, and appropriate indicators of data quality and standard procedures for field sampling and handling. This included the following points to quantify tolerable limits: The null hypothesis for the investigation was that the 95% Upper Confidence Limits (UCL) of the average concentration of contaminants of concern at the site exceeds soil land use criteria appropriate to land use of eth proposed development. Acceptance of site suitability was based on the probability that: The 95% UCL of the average concentration of the data set satisfied the given site criteria (thus, a limit on the decision error was 5% that a conclusive statement may be incorrect); The standard deviation of the data set was less than 50% of the relevant criteria; and No single result exceeded the criteria by 250% or more. Soil and groundwater concentrations for the chemicals of concern that were below investigation criteria made or approved by the NSW EPA were treated as acceptable and indicative of suitability for the proposed land use(s). If contaminant concentrations exceeded the adopted criteria, further investigation was considered prudent. If no exceeded the criteria previous device on the streated as acceptable and indicative of suitability for the proposed land use(s).

DQO Step	Details
7. Develop the Detailed Plan for Obtaining Data (Optimise the design for obtaining data) Identify the most resource-effective sampling and analysis design for general data that are expected to satisfy the DQOs.	 In order to identify the most resource-effective sampling and analysis design and satisfy the DQOs: Soil sampling was conducted at 12 locations using a generally systematic grid pattern across accessible parts of the site, in accordance with the minimum number points recommended under NSW EPA 2022 Sampling Design Guidelines. An upper soil profile sample was collected at each borehole location and tested for the COPCs (Section 4.4) to assess the conditions of the fill layer, and impacts from activities at ground level.
	• Further discrete, natural samples were analysed for priority metals, TRH, BTEX and PAH. Samples were selected on field observations (including visual and olfactory evidence), giving consideration to the subsurface stratigraphy.
	 A total of 3 groundwater monitoring wells were gauged and sampled to assess groundwater quality at the site.
	 A groundwater monitoring event (GME) was completed, with laboratory analysis of representative COPCs.
	 A review of the results was undertaken to determine if further sampling was warranted.

Investigation data was assessed against the quality indicators outlined in **Table 5-2** for validation purposes. Assessment of data quality is summarised in **Section 6** and further detailed in **Appendix J**.

QA/QC Component	Data Quality Indicator(s)		
Precision A quantitative measure of the variability (or reproducibility) of data	 Data precision was assessed by reviewing the performance of blind field duplicate sample sets, through calculation of relative percentage differences (RPD). Data precision was deemed acceptable if RPDs were found to be less than 30%. RPDs that exceeded this range were considered acceptable where: Results were less than 10 times the limits of reporting (LOR); Results were less than 20 times the LOR and the RPD was less than 50%; or Heterogeneous materials or volatile compounds were encountered. 		
Accuracy A quantitative measure of the closeness of reported data to the "true" value	 Data accuracy was assessed through the analysis of: Split field duplicate sample sets; Field and method blanks, for the analytes targeted in the primary samples; Matrix spike sample sets; and Laboratory control samples. 		
Representativeness The confidence (expressed qualitatively) that data are representative of each medium present onsite	 To ensure the data produced by the laboratory were representative of conditions encountered in the field, the following measures were taken: Blank samples run in parallel with field samples, to confirm there were no unacceptable instances of laboratory artefacts; Review of RPD values for field and laboratory duplicates to provide an indication that the samples were generally homogeneous, with no unacceptable instances of significant sample matrix heterogeneities; and The appropriateness of collection methodologies, handling, storage, and preservation techniques was assessed to ensure/confirm there was minimal opportunity for sample interference or degradation (i.e. volatile loss during transport due to incorrect preservation / transport methods). 		
Completeness A measure of the amount of useable data from a data collection activity	 Analytical data sets acquired during the DSI were evaluated as complete upon confirmation that: Standard operating procedures (SOPs) for sampling protocols were adhered to; and Copies of all chain of custody (COC) documentation were included and found to be properly completed. It could therefore be considered whether the proportion of "useable data" generated in the data collection activities was sufficient for the purposes of the land use assessment. 		
Comparability The confidence (expressed qualitatively) that data may be considered to be equivalent for each sampling and analytical event	Data sets from separate sampling episodes were required and issues of comparability were reduced through adherence to SOPs and regulator-endorsed or published guidelines and standards on each data gathering activity. In addition, the data were collected by experienced samplers and NATA-accredited laboratory methodologies will be employed.		

5.4 Sampling Rationale

With reference to the CSM described in **Section 4**, soil and groundwater sampling was planned in accordance with the following rationale:

- Sampling of fill and natural soils from twelve borehole locations across accessible parts of the site, to characterise *in situ* soils.
- The buildings on the subject site were operational and occupied. No investigation could be undertaken within the building;

- Soil sampling was conducted at 12 locations using a generally systematic grid pattern across accessible parts of the site, in accordance with the minimum number points recommended under NSW EPA (2022) Sampling Design Guidelines.
- A shallow soil profile sample was collected at each borehole location and tested for the COPCs (Section 4.4) to assess the conditions of the fill layer, and impacts from activities at ground level.
- Some locations were selected for targeted sampling and site coverage.
- Completion of a GME at three monitoring wells, to characterise local groundwater conditions; and
- Laboratory analysis of representative soil and groundwater samples for the COPCs.

5.5 Assessment Criteria

The assessment criteria adopted for this DSI are outlined in **Table 5-3**. These were selected from available published guidelines that are endorsed by national or state regulatory authorities, with due consideration of the exposure scenarios that are expected for various parts of the site, the likely exposure pathways, and the identified potential receptors.

For the purposes of this DSI, the adopted soil assessment criteria are referred to as the *Soil Investigation Levels* (SILs) and the adopted groundwater assessment criteria are referred to as *Groundwater Investigation Levels* (GILs).

Medium	Guidelines	Rationale
Soil	Guidelines NEPC (2013) HILs, HSLs and Management Limits for TRH	Rationale Soil Health-based Investigation Levels (HILs) NEPC (2013) HIL-A thresholds for low density residential settings with garden for soil access. Soil Health-based Screening Levels (HSLs) NEPC (2013) HSL-A&B thresholds for vapour intrusion at hospital sites applicable to assess potential human health impacts from residual vapours resulting from petroleum, BTEX and naphthalene (per NEPC (2013) Section 2.4.8 Schedule B1). Fine and/or Coarse grained soil criteria were applied according to relevant soil profiles. Asbestos For asbestos in soil, the following criteria are applicable: • No visible asbestos on soil surface in all areas of the site; and • Asbestos presence/absence in collected soil samples. Ecological Investigation Levels (EILs) / Ecological Screening Levels (ESLs) ElLs / ESLs were considered relevant for any retained deep soils zone and/or landscape area on the site. ElLs / ESLs only apply to the top 2 m (root zone). The derived ElL criteria presented by El are based on the addition of site specific Added Contaminant Limit (ACL) criteria and the Ambient Background Concentration (ABC) for a high traffic NSW suburb. The adopted ESL criteria presented by El are based on coarse grained criteria, as a conservative approach. Note: ElLs/ESLs are not applicable to the majority of the site as it will be occupied by a building. Management Limits for Petroleum Hydrocarbons Where the HSLs and ESLs for petroleum hydrocarbons were exceeded, sample results were also assesesed against the NEPC (2013) Management Limi
		buried infrastructure.

Table 5-3	Adopted Investigation	Levels for So	oil and Groundwater
-----------	-----------------------	---------------	---------------------

Medium	Guidelines	Rationale
Groundwater	ANZG (2018) GILs for Marine Waters and NEPC (2013) Groundwater HSLs	Groundwater Investigation Levels (GILs) for Marine Waters ANZG (2018) provides GILs for typical, slightly-moderately disturbed aquatic ecosystems, Trigger Values (TVs) for the 95% level of protection of aquatic ecosystems; however, the 99% TVs were applied for the bio-accumulative analyte. Health-based Screening Levels (HSLs) The NEPC (2013) groundwater HSLs for vapour intrusion were used to
		assess potential human health impacts from residual vapours resulting from petroleum, BTEX and naphthalene impacts. The <i>HSL-D</i> thresholds for commercial and industrial settings were applied (per NEPC (2018) Section 2.4.8 Schedule B1). Coarse Grained soil criteria were applied, being the most conservative of the material types observed at the site.
	HEPA (2020) for PFAS	PFAS National Environmental Management Plan Version 2.0 – January 2020 - National Chemicals Working Group of the Heads of EPAs Australia and New Zealand (HEPA, 2020). The Human Health investigation levels for soil for residential with minimal opportunities for soil access (HIL B) PFAS guideline values were used.
	NHMRC (2022) Drinking Water Guidelines	Recreational Criteria The lowest values provided by the NHMRC (2022) Drinking Water criteria (multiplied by a factor of 10) were used to represent a recreational exposure scenario.

5.6 Soil Sampling

The soil sampling works were conducted at the site according to the methodology described in **Table 5-4**. Sampling locations are illustrated in **Figure 2**, **Appendix A**.

Table 5-4	Summarv	of	Soil	Sampling	Methodology

Activity/Item	Details
Fieldwork	Intrusive soil investigations were conducted on 23 and 24 May 2023, and comprised 13 borehole locations in accessible areas of the site. Location rationale is provided in Section 5.3 .
Investigation Method	Test bores were advanced by track-mounted drill rig, fitted with solid flight augers. Borehole details are presented in the detailed logs attached in Appendix F .
Soil Logging	Drilled soils were classified in the field with respect to lithological characteristics and evaluated on a qualitative basis for odour and visual signs of contamination. Soil classifications and descriptions were based on Australian Standard (AS) 1726-2017.
Soil Sampling	Soil samples were collected using a dry grab method (the sampler wearing unused, dedicated nitrile gloves) and placed into laboratory-supplied, acid-washed, solvent-rinsed glass jars, snap-lock, plastic bags or jars with a Teflon free lid.
	Blind and split field duplicates were separated from the primary samples and placed into dedicated glass jars.
	At each location, aliquots of soil were placed into separate zip-lock bags for laboratory asbestos analysis.
Decontamination	Nitrile sampling gloves were replaced between each sampling location.
	Sampling equipment (i.e. auger) was scrubbed and washed with a mixture of Alconox and potable water (1/20) until free of all residual materials, then rinsed with laboratory-supplied, purified water.
Management of Soil Cuttings	Soil cuttings were used to backfill the completed boreholes.
Sample Preservation and	Samples were stored in a chilled chest (with frozen ice packs), whilst on-site and in transit to the

Activity/Item	Details
Transport	contracted laboratories.
	Soil samples were transported to SGS Australia Pty Ltd (SGS; the primary laboratory) and split (inter-laboratory) soil field duplicates were submitted to Envirolab Services Pty Ltd (Envirolab; the secondary laboratory) under strict chain-of-custody (COC) conditions. Signed COC certificates and sample receipt advice (SRA) were provided by SGS and Envirolab for confirmation purposes (Appendix H).
Laboratory Analysis and Quality Control	Soil samples were analysed by SGS and Envirolab for the COPC. In addition to the split (inter-laboratory) field duplicate (analysed by Envirolab), QC testing comprised one blind (intra-laboratory) field duplicate, an equipment rinsate blank, a laboratory- prepared trip spike soil sample and a laboratory-prepared trip blank soil sample, all analysed by SGS.

5.7 Groundwater Sampling

The groundwater sampling works were conducted at the site as per methodology described in **Table 5-5**. The monitoring well locations are illustrated in **Figure 2**, **Appendix A**.

Table 5-5	Summary	of	Groundwater	Sampling	Methodology

Activity/Item	Details
Fieldwork	Three groundwater monitoring wells (BH1M, BH9M, BH128M) were installed by EI between 22 and 24 May 2023. Water level gauging, well purging, measurement of physiochemical parameters and groundwater sampling was conducted on 1 June 2023.
Well Construction	Well construction details are presented in the detailed logs attached in Appendix F.
Well Development	Well development involved agitation within the full length of the water column using a dedicated, High Density Polyethylene (HDPE), disposable bailer, followed by removal of water and accumulated sediment.
Well Gauging	Monitoring wells were gauged to determine standing water levels (SWLs) prior to groundwater sampling. Gauging was conducted using a water/oil interface probe.
Well Purging and Field Testing	The measurement of water quality parameters was conducted repeatedly during purging and the details were recorded onto field data sheets, until water quality parameters stabilised. Field measurements for Dissolved Oxygen (DO), Electrical Conductivity (EC), temperature, oxidation-reduction potential (ORP) and pH of the purged water were also recorded during well purging. Readings are summarised in Table 7-3 .
Groundwater Sampling	Groundwater samples were collected using a peristaltic low flow pump. Water was continuously measured for five parameters (Temperature, EC, ORP, DO, pH). Once three consecutive field measurements were recorded for purged water to within \pm 10% for DO, \pm 3% for EC, \pm 0.2 units for pH, \pm 0.2° for temperature and \pm 20 mV for ORP, this was considered to indicate that representative groundwater quality had been achieved and final physio-chemical measurements were recorded. Groundwater samples were then collected from the low flow sampling pump discharge point.
Decontamination Procedure	The water level probe was washed in a solution of potable water and <i>Decon 90</i> and then rinsed with potable water.
Sample Preservation	 Sample containers were supplied by the laboratory with the following preservatives: one, 1 litre amber glass, acid-washed and solvent-rinsed bottle; two, 40ml glass vials, pre-preserved with dilute hydrochloric acid, Teflon-sealed; one, 250mL, HDPE bottle, pre-preserved with dilute nitric acid (1mL); and Samples for metals analysis were field-filtered using 0.45 µm pore-size membranes. All containers were filled with sample to the brim then capped and stored in insulated chests (containing ice bricks), until completion of the fieldwork and during sample transit to the laboratory.
Sample Transport	After sampling, the ice brick filled chests were transported to the laboratories using strict COC procedures. SRA was provided by the laboratory to document sample condition upon receipt. Copies of the SRA and COC certificates are presented in Appendix H .
Laboratory Analysis and Quality Control	Groundwater samples were analysed by SGS and Envirolab for the contaminants of concern. In addition to the split (inter-laboratory) field duplicate (analysed by Envirolab), QC testing comprised a

Activity/Item	Details
	blind (intra-laboratory) field duplicate, an equipment rinsate blank, a laboratory-prepared, trip spike water sample and a laboratory-prepared, trip blank water sample, all tested by SGS.

6. DATA QUALITY ASSESSMENT

The assessment of data quality is defined as the scientific and statistical evaluation of environmental results to determine if they meet the objectives of the project (USEPA, 2006). For this DSI, data quality assessment involved an evaluation of the compliance of the field (sampling) and laboratory procedures with established protocols, as well as the accuracy and precision of the associated results from the quality control measures. The findings are summarised in **Table 6-1** and discussed in detail in **Appendix J**.

In summary, the overall quality of the analytical data from this DSI was considered to be of an acceptable standard for interpretive use and preparation of an updated CSM.

Stage	Control	Conformance [Yes, Part, No]	Report Section(s)
Preliminaries	DQO established	Yes	See Sections 5.2 and 5.3
Field Work	Suitable documentation of fieldwork observations including borehole logs, field notes.	Yes	See Appendix F and G
Sampling Plan	Use of relevant and appropriate sampling plan (density, type, and location)	Yes	See Section 5.4
	All media sampled and duplicates collected	Part	See Appendix H - Soil inter-laboratory duplicate was lost during transportation and the testing was not conducted during this project, it considered minor-non conformance
	Use of approved and appropriate sampling methods (soil, groundwater, soil vapour)	Yes	See Sections 5.6 and 5.7
	Preservation and storage of samples upon collection and during transport to the laboratory	Yes	See Sections 5.6 and 5.7
	Appropriate field rinsate and trip blanks taken	Yes	See Appendix H
	Completed field and analytical laboratory sample COC procedures and documentation	Yes	See Appendix H
Laboratory	Sample holding times within acceptable limits	Part	See Appendix I, J, K - In SGS laboratory certificate SE248198, extraction date of a few non-critical items (pH and TRH in rinsate water) noticed, it considered minor-no conformance but has no effect on the primary samples for contamination investigation purpose
	Use of appropriate analytical procedures and NATA-accredited laboratories	Yes	See Appendix I, J, K
	LOR/PQL low enough to meet adopted criteria	Yes	See Appendix I, J, K
	Laboratory blanks	Yes	See Appendix I, J, K
	Laboratory duplicates	Part	See Appendix I, J, K - In SGS laboratory certificate SE248198,three items in laboratory duplicate exceed the criteria and likely due to

Table 6-1 Quality Control Process

Stage	Control	Conformance [Yes, Part, No]	Report Section(s)
			sample heterogeneity
	Matrix spikes	Part	See Appendix I, J, K - In SGS laboratory certificate SE248198,one item in matrix spike exceed the criteria and likely due to sample heterogeneity
	Surrogates (or System Monitoring Compounds)	Yes	See Appendix I, J, K
	Analytical results for replicated samples, including field and laboratory duplicates and inter-laboratory duplicates, expressed as RPD	Part	See Appendix I, J, K - a few items exceed the RPDs with majority within the criteria, so it is considered minor non- coformance
	Checking for the occurrence of apparently unusual or anomalous results (e.g. laboratory results that appear to be inconsistent with field observations or measurements)	Yes	See Appendices B, F, G
Reporting	Report reviewed by senior staff to confirm project meets NSW EPA guidelines and objectives	Yes	See Document Control

7. RESULTS

7.1 Soil Field Results

7.1.1 Sub-Surface Conditions

The general site lithology encountered during the soil investigation was a layer of filling (to the depths of up to 1.6 mBGL), overlying natural clay/silty clay soil. More details are provided in **Table 7-1**. Borehole logs are presented in **Appendix F**.

Table 7-1	Generalised	Sub-Surface	Profile
-----------	-------------	-------------	---------

Layer	Description	Minimum and Maximum Depth (mBGL)
Hardstand	Concrete/asphalt	0.0 – 0.15
Fill/Topsoil	Silty SAND, Sandy Gravel, Gravelly SAND,SAND, Clayey SAND, Silty CLAY, Sandy CLAY	0.0– 1.2
Natural	CLAY, Silty CLAY, Sandy CLAY	0.5 - 3.0
Bedrock	SHALE , SANDSTONE	0.9-7.24+

Note 1 + Termination depth of deepest borehole.

7.1.2 Field Observations

Soil samples were collected from the test bores at various depths from fill and natural layers. All examined soil samples were evaluated on a qualitative basis for odour and visual signs of contamination (e.g. hydrocarbon odours, oil staining, petrochemical filming, asbestos fragments, ash, charcoal) and the following observations were noted:

- No obvious odour was observed in any of the drilled/examined soils;
- No soil staining was observed in any of the drilled/examined soils;
- No ash or slag was observed in any of the drilled/examined soils;

- No fragments of potential ACM were observed in any of the drilled/examined soils; and
- No groundwater seepage was observed while drilling of boreholes.

7.2 **Groundwater Field Results**

7.2.1 **Monitoring Well Construction**

Three groundwater monitoring wells (BH1M, BH9M, BH12M) were installed by EI in 2023. Construction details for the installed well are summarised in Figure 7-2.

-	-				
Well ID	Well Depth (mBGL)	Top of Casing (mBGL) ¹	Screen Interval (mBGL)	Lithology Screened	
BH1M	6.0	0.09	3.0-6.0	SANDSTONE	
BH9M	6.0	0.08	3.0-6.0	SANDSTONE	
BH12M	6.0	0.11	3.0-6.0	SANDSTONE	
Feetneter					1

Figure 7-2 Monitoring Well Construction Details

Footnote:

All tops of casing were installed below ground level ('stick down'). 1

7.2.2 **Field Observations**

A GME was conducted on 1 June 2023. Physiochemical parameters were recorded immediately before sampling, as presented in Table 7-2. Field data sheets are attached in Appendix G. Samples were then evaluated on the basis of odour and visual signs of contamination, with the following observations noted:

- Groundwater was found to be clear;
- No odour was detected in any of the groundwater monitoring wells; and
- Slight sheen was observed while sampling groundwater, at locations BH9M and BH12M.

Table 7-2 Groundwater Physiochemical Parameters

Well	SWL (mBGL)	DO ³ (mg/L)	рН ⁴	EC⁵ (μS/cm)	Temperature (°C)	Redox ¹ (mV)
BH1M	1.98	_2	7.24	1,683	19.44	-209.3
BH9M	1.97	_2	5.41	4,413	19.77	-351.6
BH12M	2.02	_2	4.91	1,374	20.1	-19.9

Footnotes:

Redox readings were adjusted to the Standard Hydrogen Electrode (SHE) potential by adding 205mV to the field readings. 1

2 Instrument malfunction.

Field observations (Table 7-2) indicated that the groundwater was brackish (EC ranging from 1,683 to 4,413 μ S/cm), slightly acidic to neutral (pH ranging from 4.91 to 7.24) and reductive (Redox < 0).

7.3 Laboratory Analytical Results

7.3.1 Soil Analytical Results

A summary of the soil analytical results is presented in **Table 7-3**. Detailed tabulation is presented in **Table B.1**, **Appendix B**.

Table 7-3	Summary	of Soil	Analytical	Results
-----------	---------	---------	------------	---------

Number of Primary Samples	Analyte	Minimum Concentration (mg/kg)	Maximum Concentration (mg/kg)	Samples Exceeding SILs	
Priority Metals					
18	Arsenic	2	9	None	
18	Cadmium	<0.3	<0.3	None	
18	Chromium (Total)	4.4	28	None	
18	Copper	4.2	120	None	
19	Lead	5	39	None	
18	Mercury	<0.05	0.27	None	
18	Nickel	<0.5	110	None	
18	Zinc	4.6	84	None	
РАН					
18	Naphthalene	<0.1	<0.1	None	
18	Benzo(a)pyrene	<0.1	0.3	None	
18	Carcinogenic PAH (as B(a)P TEQ)	<0.3	0.4	None	
18	Total PAH	<0.8	3.5	None	
BTEX and TRH					
18	Benzene	<0.1	<0.1	None	
18	Toluene	<0.1	<0.1	None	
18	Ethyl benzene	<0.1	<0.1	None	
18	Xylenes (Total)	<0.3	<0.3	None	
18	TRH - F1	<25	<25	None	
18	TRH - F2	<25	<25	None	
18	TRH - F3	<90	140	None	
18	TRH - F4	<120	130	None	
Pesticides					
18	OCP	<1	<1	None	
18	OPP	<1.7	<1.7	None	
РСВ					
18	Total PCB	<1	<1	None	
PFAS					
4	PFOS+PFHxS	<0.0016	0.0018	None	
18	PFOA	<0.0008	<0.0008	None	

Number of Primary Samples	Analyte	Minimum Concentration (mg/kg)	Maximum Concentration (mg/kg)	Samples Exceeding SILs		
Asbestos						
12	Asbestos	Not detected	Not detected	None		

7.3.2 Groundwater Analytical Results

A summary of the groundwater analytical results is presented in **Table 7-4**. Detailed tabulation is presented in **Table B.2**, **Appendix B**.

Number of Primary Samples	Analyte	Minimum Concentration (µg/L)	Maximum Concentration (µg/L)	Sample(s) Exceeding GILs		
Priority Meta	als					
3	Arsenic	<1	<1	None		
3	Cadmium	<0.1	0.5	<u>ANZG (2018) GILs (0.2 µg/L)</u> BH1M (0.5 µg/L)		
3	Chromium (Total)	<1	<1	None		
3	Copper	<1	3	<u>ANZG (2018) GILs (1.3 µg/L)</u> BH12M (3 µg/L)		
3	Lead	<1	<1	None		
3	Mercury	<0.1	<0.1	None		
3	Nickel	2	32	<u>ANZG (2018) GILs (150 μg/L)</u> BH12M (3 μg/L) BH12M (3 μg/L)		
3	Zinc	<5	13	None		
PAH						
3	Naphthalene	<0.1	<0.1	None		
3	Benzo(α)pyrene	<0.1	<0.1	None		
3	Total PAH	<1	<1	None		
BTEX and T	RH					
3	Benzene	<0.5	<0.5	None		
3	Toluene	<0.5	6.1	None		
3	Ethyl benzene	<0.5	<0.5	None		
3	o-xylene	<0.5	<0.5	None		
3	m + p-xylene	<1	<1	None		
3	TRH - F1	<50	73	None		
3	TRH - F2	<60	300	None		
3	TRH - F3	<500	<500	None		
3	TRH - F4	<500	<500	None		

8. SITE CHARACTERISATION

8.1 Subsurface Conditions

The general site lithology encountered during the soil investigation was a layer concrete/asphalt in some locations, overlying a fill layer of silty sand, sandy gravel, gravelly sand, sand ,clayey sand ,silty clay or sandy clay (down to 1.2 mBGL), overlying natural clay, silty clay or sandy clay (down to 3.0 mBGL). Bedrock was identified at depths ranging from 0.9 to 7.24 mBGL.

No obvious odours were observed in any fill or natural soils recovered at borehole locations within the site.

No ash, slag or other foreign materials (including ACM) were observed in any of the recovered fill or natural soil.

Water seepage inflow was not observed in any of the drilled boreholes during the current investigation. However, such visual confirmation is typically hard to be obtained when the drilling method involves the use of drilling fluids. This was the case for the boreholes reaching down to the sandstone layers.

8.2 Soil Impacts

No contaminants of concern (priority metals, BTEX, TRH, PAHs, OCPs, OPPs, PCBs and PFAS) were reported at concentrations above the adopted health-based criteria.

Asbestos was not detected (at a reporting limit of 0.01 %w/w) in any of the fill samples collected from each of the investigated locations.

No contaminants of concern were reported at concentrations above adopted ecological criteria at any of the investigated locations outside the existing building footprint.

8.3 Acid Sulfate Soil Impacts

The main objective of the acid sulfate soil assessment was to evaluate the potential for ASS to be present on the site. Should ASS be identified, a secondary objective was to provide advice for the management of such soils during the proposed excavations.

ASSs are naturally occurring soils (or sediments) containing iron sulphides, deposited in estuarine environments. As ASSs comprise natural materials, their occurrence is not related to site boundaries or anthropogenic contamination; rather, they extend across regions suitable for their formation.

When ASS are exposed to air (e.g. due to bulk excavation or dewatering), oxygen reacts with the iron sulphide, producing sulphuric acid (and iron oxides). The acid may be produced in large quantities causing the leaching of metals from soils and associated adverse groundwater quality impacts. The problem is exacerbated as impacted groundwater discharges to waterways causing severe short and long term socio-economic and environmental impacts, including damage to man-made structures and natural ecosystems.

ASS can be classified as either actual acid sulphate soil (AASS), within which are materials that have already reacted with oxygen to produce acid; or potential acid sulfate soil (PASS), within which are materials that contain iron sulphides, but have not yet been exposed to oxygen (e.g. ASSs below the water table) and therefore have not produced sulphuric acid, though they have the capacity to do so.

As part of this DSI investigation, representative samples (BH4_1.2-1.3, BH4_1.7-1.8 and BH3_0.8-0.9) were assigned for laboratory analysis, in accordance with the guidance prescribed in Section 4.2 of ASSMAC (1998) and Sullivan *et al.* (2018). During the analyses, some samples were also subjected to a suspension peroxide oxidation combined with acidity and/or sulfate (SPOCAS) tests, to confirm the presence or absence of any PASS. The results of these analyses are presented in **Table 8-1**.

Table 8-1 Summary of the Laboratory Analytical Results

Sampl e ID	Depth (m BGL)	Date	Materi al	рН ғ	рН _{FOX}	Reacti on	рН _К сі (SPO CAS)	Peroxid e pH (SPOCAS)	TAA (moles H⁺/tonne)	TPA (moles H⁺/tonne)	TSA (moles H⁺/tonne)	S _{KCI} (%w/w)	S _p (%w/w)	S _{pos} (%w/w)	S _{Cr} (%w/w)
BH4	1.2-1.3	23/05/ 2023	Natural	6.3	6.2	Х	-	-	-	- -	-	-	-	-	-
BH4	1.7-1.8	23/05/ 2023	Natural	5.3	4.7	Х	-	-	-	-	-	-	-	-	-
BH3	0.8-0.9	23/05/ 2023	Natural	5.0	4.3	Х	4.4	5.2	45	<mark>55</mark>	10	0.019	0.021	<0.005	-
ASSMAC Action Criteria			4	3.5	NC	NC	NC	NC	18	18	NC	NC	0.03	0.1	

Notes:

Indicates reported result is over the action criterion

Blank cells have been used where the test was not performed

BGL = below ground level

X = slight reaction; XX = moderate reaction; XXX = strong reaction; XXXX = extreme reaction

Criteria derived from Section 2 of the Acid Sulfate Soils Manual (ASSMAC, 1998), specifically the Action Criteria that trigger the need to prepare and ASS management plan, where >1000 tonnes fine textured (clay-dominated) soils are to be disturbed

NC = no currently available criterion

The sulfur trails of the SPOCAS suite reported peroxide oxidisable sulfur (SPOS) concentrations below LOR (< 0.005) and titratable sulfidic acidity (TSA) concentrations below their corresponding criterion. Hence, the potential acid generating components in the soils were not entirely sulfur-related.

The main objective of this assessment was to evaluate the potential for ASS to be present on the site. The key findings were as follows:

- Site elevations range from approximately 8 to10 mAHD.
- The site is underlain by (weathered) Ashfield Shale bedrock, which occurs from 0.9 to 7.24 mBGL.
- ASS planning and risk maps indicated that the subject site lies within a *Class 5* area, having no known occurrence (of ASS). Acid Sulfate Soils are not typically found in Class 5 areas. Areas classified as Class 5 are located within 500 meters of adjacent class 1, 2, 3 or 4 areas.
- The site displayed none of the geomorphic features characteristic of ASS.
- The site demonstrated none of the field indicators for actual and/or potential ASS listed in the ASSMAC (1998) *Acid Sulfate Soil Manual*.
- None of the examined soils displayed any of the visual or olfactory indicators of actual and potential acid sulfate soils, such as pale yellow deposits / coatings of jarosite, dark (blue/green) grey muds and hydrogen sulphide (H₂S) odours.

Based on the findings from this assessment and with due consideration of EI's Statement of Limitations (**Section 11**), EI concludes that the presence of ASS on the site is unlikely and the potential for generation of acid sulfate conditions during the proposed development can be regarded as negligible. Hence, the preparation of an ASS management plan for the proposed development was deemed unwarranted.

8.4 Groundwater Impacts

During the GME conducted on 1 June 2023, standing water level varied between 1.98 and 2.02 mBGL.

With reference to **Table B.2**, **Appendix B**, contaminant concentrations in groundwater were reported below the adopted criteria, with the exception of the following:

Priority Metals

Cadmium concentrations were reported at marginal exceedance of adopted criterion for marine water (0.2 μ g/L) in monitoring wells BH1M (0.5 μ g/L)

Copper concentrations were reported at marginal exceedance of adopted criterion for marine water (1.3 μ g/L) in monitoring wells BH12M (3 μ g/L).

Nickel concentrations were reported at marginal exceedance of adopted criterion for marine water (7 μ g/L) in monitoring wells BH9M (32 μ g/L) and BH12M (9 μ g/L).

Zinc concentrations were reported at marginal exceedance of adopted criterion for marine water (15 μ g/L) in monitoring wells BH9M (150 μ g/L) and BH12M (46 μ g/L).

These marginally exceeding concentrations, however, are consistent with the disturbed local urban background conditions, and are unlikely a result of site-specific impacts

Petroleum Hydrocarbons

Detections of TRH-F1 and TRH-F2 were reported at BH9M and light sheens were observed at BH9M and BH12M. The concentrations of TRH-F1 andTRH-F2 did not exceed the adopted health-based criterion (HSL-A&B)

9. CONCLUSION

The property located at 1H Hospital Road, Concord West NSW was the subject of a DSI, conducted in order to assess the nature and degree of on-site contamination. The key findings of this DSI were as follows:

- At the time of site inspection, the site was occupied by a single-storey fire service building and an open space car park.
- The northern portion of the site (car park) was covered by asphalt pavement, which appeared to be in good condition, with minimal cracking.
- There was no visual evidence of underground storage tanks (UST) or aboveground storage tanks (AST) on site. Evidences of USTs were, however, observed on the neighbouring site to the east (a service station).
- No ash, slag or other foreign materials (including ACM) were observed in samples collected from fill or natural soils.
- No contaminants of concern (primary metals, BTEX compounds, PAHs, OCPs, OPPs and PCBs) were
 reported in soils at concentrations above the adopted ecological or health-based criteria.
- Contaminant concentrations in groundwater were reported below the adopted criteria, with the exception
 of the following:
 - Cadmium, copper, nickel and zinc were reported in groundwater at concentrations marginally above the adopted marine water criteria. These concentrations, however, were considered to be consistent with the disturbed urban background conditions, instead of a result of site-specific impacts.
- The following data gaps were identified by the current conceptual site model:
 - The conditions of the soils within the footprint of the existing building are still unknown;
 - The presence and extent of per- and poly-fluoroalkyl substances (PFAS) in groundwater is unknown.

Conclusion

Based on the findings obtained from this DSI, and with consideration of EI's *Statement of Limitations* (**Section 11**), EI concludes that the site can be made suitable for the potential future site redevelopment, provided the recommendations detailed in **Section 10** are implemented.

10. RECOMMENDATIONS

El provides the following recommendations:

- Before commencement of demolition works, a Hazardous Materials Survey (HMS) shall be completed by a suitably qualified consultant, to identify any hazardous materials present within the existing building fabrics.
- The HMS should guide subsequent building and infrastructure demolition at the site, to prevent release of hazards materials.
- Additional intrusive investigation should be conducted, to close the remaining data gaps at the subject site, including:
 - Soil characterisation within the footprint of the current building (if accessible); and
 - · Groundwater investigation targeting additional COPCs .
- Preparation and implementation of a Remediation Action Plan (RAP), if remediation is required based on results obtained from the additional intrusive investigations mentioned above. The RAP should also include:
 - Waste management plan for any surplus materials (including potential virgin excavated natural materials (VENM) excavated and removed from site in accordance with NSW EPA (2014); and
 - A sampling and analysis quality plan (SAQP) for the post-remedial validation assessment, aimed at confirming that site remediation was effective.
- Implementation of the remediation and validation works for the site, as outlined in the RAP.
- Preparation of a validation report by a suitably qualified environmental consultant, confirming site suitability for its proposed land use.

11. STATEMENT OF LIMITATIONS

This report has been prepared for the exclusive use of LIPMAN Pty Ltd, which is the only intended beneficiary of EI's work. The scope of the investigation carried out for the purpose of this report was limited to that agreed with LIPMAN Pty Ltd.

No other party should rely on this document without the prior written consent of EI, and EI undertakes no duty, or accepts any responsibility or liability, to any third party who purports to rely upon this document without EI's approval.

The findings presented in this report are the result of discrete and specific sampling methodologies used in accordance with best industry practices and standards. Due to the site-specific nature of soil sampling from point locations, it is considered likely that all variations in subsurface conditions across a site cannot be fully defined, no matter how comprehensive the field program.

While normal assessments of data reliability have been made, EI assumes no responsibility or liability for errors in any data obtained from previous assessments conducted on site, regulatory agencies (e.g. Council, NSW EPA), statements from sources outside of EI, or developments resulting from situations outside the scope of works of this project.

Despite all reasonable care and diligence, the ground conditions encountered and concentrations of contaminants measured may not be representative of conditions between the locations sampled and investigated. In addition, site characteristics may change at any time in response to variations in natural conditions, chemical reactions and other events (e.g. groundwater movement and or spillages of contaminating substances). These changes may occur subsequent to El's investigation.

El's assessment is necessarily based upon the results of the site investigation and the restricted program of surface and subsurface sampling, screening and chemical testing which was set out in the project proposal. Neither El, nor any other reputable consultant, can provide unqualified warranties nor does El assume any liability for site conditions not observed or accessible during the time of the investigations.

This report was prepared for LIPMAN Pty Ltd and no responsibility is accepted for use of any part of this report in any other context or for any other purpose or by other third parties. This report does not purport to provide legal advice.

This report and associated documents remain the property of EI subject to payment of all fees due for this assessment. The report shall not be reproduced except in full and with prior written permission by EI.

REFERENCES

ANZECC/ARMCANZ (2000) Australian and New Zealand Guidelines for Fresh and Marine Water Quality, Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand, October 2000.

ANZG (2018) Australian and New Zealand Guidelines for Fresh and Marine Water Quality, Australian and New Zealand Governments and Australian State and Territory Governments, Canberra ACT, Australia, August 2018.

Lane Cove Local Environmental Plan 2009.

Chapman GA and Murphy CL (1989) *Soil Landscapes of the Sydney 1:100 000 Sheet*, Soil Conservation Service of NSW, Sydney, September 1989.

DEC (2007) *Guidelines for the Assessment and Management of Groundwater Contamination*, New South Wales Department of Environment and Conservation, DEC 2007/144, June 2007.

DMR (1983) Sydney 1:100,000 Geological Series Sheet 9130, Geological Survey of New South Wales, Department of Mineral Resources.

EnRisk (2016) *Proposed Decision Tree for Prioritising Sites Potentially Contaminated with PFASs,* Environmental Risk Services Pty Ltd, Environment Protection Authority of New South Wales, 25 February 2016.

HEPA (2020) *PFAS National Environmental Management Plan*, National Chemicals Working Group of the Heads of the EPAs Australia and New Zealand (HEPA), January 2020.

Morrow (2020) *Geotechnical Investigation Report*, 47A Penrose Street, Lane Cove West NSW, Report No. P1955_01, dated 14 June 2020.

Murphy CL (1997) *Acid Sulfate Soil Risk of the Botany Bay Sheet (2nd Edition)*, Department of Land and Water Conservation, Sydney (supplied by the Sydney South Coast, Geographical Information Systems Unit).

NEPC (2013) Schedule B1 Guideline on Investigation Levels for Soil and Groundwater, Schedule B2 Guideline on Site Characterisation and Schedule B4 Guideline on Site-Specific Health Risk Assessments, from the National Environment Protection (Assessment of Site Contamination) Amendment Measure, National Environment Protection Council, April 2013.

NHMRC (2022) Australian Drinking Water Guidelines Paper 6 National Water Quality Management Strategy, National Health and Medical Research Council, National Resource Management Ministerial Council, Commonwealth of Australia, Canberra. Version 3.7, January 2022.

NSW (2021) State Environmental Planning Policy (Resilience and Hazards) (2021) (formerly SEPP 55 – Remediation of Land), last modified 2 March 2022.

NSW EPA (2014) *Waste Classification Guidelines – Part 1: Classifying Waste*, Environment Protection Authority of New South Wales, EPA 2014/0796, November 2014.

NSW EPA (2017) Contaminated Land Management: Guidelines for the NSW Site Auditor Scheme (3rd Edition), NSW EPA, October 2017.

NSW EPA (2020) Consultants Reporting on Contaminated Land: Contaminated Land Guidelines, Environment Protection Authority of New South Wales, EPA 2020P2233, April 2020.

NSW EPA (2022a) Sampling Design Part 1 - Application, Contaminated Land Guidelines, Environment Protection Authority of New South Wales, EPA 2022P3915, August 2022.

NSW EPA (2022b) Sampling Design Part 2 – Interpretation: Contaminated Land Guidelines, Environment Protection Authority of New South Wales, EPA 2022P3916, August 2022.

NUDLC (2012) *Minimum Construction Requirements for Water Bores in Australia* (3rd Edition). National Uniform Drillers Licensing Committee 2011, February 2012.

Standards Australia (2005) Table E1 - Minimum Sampling Points Required for Site Characterisation, in Australian Standard AS4482.1-2005 Guide to the Investigation and Sampling of Sites with Potentially Contaminated Soil - Part 1: Non-volatile and Semi-volatile Compounds, Standards Australia 2005.

USEPA (2000a) *Guidance for the Data Quality Objectives Process - EPA QA/G-4*, United States Environmental Protection Agency, EPA/600/R-96/055, August 2000.

USEPA (2000b) *Data Quality Objectives Process for Hazardous Waste Site Investigations - EPA QA/G-4HW*, United States Environmental Protection Agency, EPA/600/R-00/007, January 2000.

USEPA (2006) *Data Quality Assessment: A Reviewers Guide - EPA QA/G-9R*, United States Environmental Protection Agency, Office of Environmental Information, EPA/240/B-06/002, February 2006.

Vic EPA (2000) *Groundwater Sampling Guidelines*, Environment Protection Authority for the State Government of Victoria, April 2000.

WADOH (2009) *Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia,* Published by the Western Australian Department of Health.

Page | 35

ABBREVIATIONS

ACM	Asbestos-Containing Materials
AS	Australian Standard
ASS	Acid Sulfate Soils
AST	Above-ground Storage Tank
B(a)P	Benzo(a)Pvrene (a PAH compound)
BH	Borehole
BTEX	Benzene Toluene Ethylbenzene Xylenes
	Chemical Control Order
000	Cheinical Control Order
	Chain of Custody
CSM	
CVOC	Chlorinated Volatile Organic Compounds (a sub-set of the VOC suite)
DO	Dissolved Oxygen
DP	Deposited Plan
DQO	Data Quality Objectives
DQI	Data Quality Indicators
DSI	Detailed Site Investigation
EC	Electrical Conductivity
EI	El Australia
EIL	Ecological Investigation Level
Envirolab	Envirolab Services Ptv Ltd
NSW EPA	Environment Protection Authority (of New South Wales)
FSI	Ecological Screening Level
F1	CCTRH (less the sum of BTEX concentrations)
F2	$\sim_{6} \circ_{10}$ TRH (less the concentration of particular)
T 2	20_{10} -0_{16} -10 $(less life concentration of naphthalene)$
	TRH >010-034
F4	
GIL	Groundwater Investigation Level
GME	Groundwater Monitoring Event
HDPE	High Density Polyethylene
HIL	Health-based Investigation Level
HSL	Health-based Screening Level
km	Kilometres
L	Litres
LGA	Local Government Area
LOR	Limit of Reporting (limit of reporting for respective laboratory method)
m	Metres
mAHD	Metres Australian Height Datum
mBGL	Metres Below Ground Level
mBTOC	Metres Below Top of Casing
ug/l	Micrograms per Litre
mg/l	Milligrams per Litre
m\/	Millivolte
NI/A	Not Applicable
	Not Applicable
	National Association of Testing Authonities, Australia
NEPC	National Environment Protection Council
NEPM	National Environment Protection Measure
NSW	New South Wales
OCP	Organochlorine Pesticides
OPP	Organophosphate Pesticides
ORP	Oxidation-Reduction Potential
PAH	Polycyclic Aromatic Hydrocarbons

PCB	Polychlorinated Biphenyls
PFAS	Per- and Poly-Fluoroalkyl Substances
рН	Potential Hydrogen (a measure of the acidity or basicity of an aqueous solution)
PID	Photo-Ionisation Detector
POEO	Protection of the Environment Operations
PQL	Practical Quantitation Limit (limit of detection for respective laboratory method)
PSH	Phase-Separated Hydrocarbons
PSI	Preliminary Site Investigation
QA/QC	Quality Assurance / Quality Control
RAP	Remediation Action Plan
RPD	Relative Percentage Differences
SAQP	Sampling and Analysis Quality Plan
SCID	Stored Chemical Information Database
SGA	SGA Environmental
SGS	SGS Australia Pty Ltd
SIL	Soil Investigation Level
SOP	Standard Operating Procedure
SRA	Sample Receipt Advice (document confirming laboratory receipt of samples)
SWL	Standing Water Level
TEQ	Toxicity Equivalent Quotient
TRH	Total Recoverable Hydrocarbons (non-specific analysis of organic compounds)
TV	Trigger Value
UCL	Upper Confidence Limit (of the mean)
UFP	Unexpected Finds Protocol
UPSS	Underground Petroleum Storage System
USEPA	United States Environmental Protection Agency
UST	Underground Storage Tank
VENM	Virgin Excavated Natural Material
VOC	Volatile Organic Compounds (specific organic compounds which are volatile)

Appendix A – Figures

eiaustralia

Suite 6.01, 55 Miller Street, PYRMONT 2009 Ph (02) 9516 0722 Fax (02) 9518 5088

Groundwater Monitoring Well locations

Approved:

Date:

--

09-06-23

Lipman Pty Ltd Detailed Site Investigation 1H Hospital Road, Concord, NSW Sampling Location Plan

2

Project: E25996.E02

Appendix B – Tables

Table B.1 – Summary of Soil Test Results

					Priority	Metals					PA	Hs			ВТ	ΈX			TR	Hs					T FAUS		Asbestos
Sample ID	Sampling Date	As	Cd	Cr#	Cu	РЬ	Hg	Ni	Zn	Carcinogenic PAHs (as B(α)P TEQ)	Benzo(a)pyrene	Total PAHs	Naphthalene	Benzene	Toluene	Ethylbenzene	Total Xylenes	2	F2	F3	F4	Total OCPs	Total OPPs	PCBs	PFOS/PFHxS	PFOA	Presence / absence
Fill			1				1	1			1	1	1	1		1	1		1		1		1		1		
BH1M_0.5-0.6	24.05.2023	3	<0.3	13	120	6	< 0.05	14	40	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	<1	<1.7	<1	-	-	No
BH2_0.1-0.2	24.05.2023	3	<0.3	12	54	25	<0.05	13	43	0.4	0.3	3.5	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	110	130	<1	<1.7	<1	-	-	No
BH3_0.2-0.3	23.05.2023	2	<0.3	16	99	5	< 0.05	20	41	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	120	<120	<1	<1.7	<1	-	-	No
BH4_0.5-0.6	24.05.2023	2	<0.3	9.7	110	5	<0.05	11	36	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	<1	<1./	<1	-	-	No
BH5_0.2 - 0.3	23.05.2023	-	-	-	-	5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH5_0.6 - 0.7	23.05.2023	3	< 0.3	5.5	34	15	< 0.05	2.8	13	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	<1	<1./	<1	-	-	No
BH6_0.1-0.2	23.05.2023	5	< 0.3	9.4	52	34	< 0.05	110	84	<0.3	0.1	1.1	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	<1	<1./	<1	<0.0016	<0.0008	No
BH7_0.5-0.6	23.05.2023	4	< 0.3	11	24	13	< 0.05	5.2	18	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	<1	<1./	<1	-	-	No
BH8_0.2-0.3	23.05.2023	5	< 0.3	28	15	27	0.22	14	45	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	< 0.3	<25	<25	<90	<120	<1	<1./	<1	<0.0016	<0.0008	No
BH9_0.1-0.2	23.05.2023		<0.3	11	15	39	0.27	6.5	47	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	<1	<1./	<1	0.0018	<0.0008	No
BH10_0.2-0.3	23.05.2023	4	< 0.3	13	11	30	0.09	3.1	27	0.4	0.2	1.5	<0.1	<0.1	<0.1	<0.1	< 0.3	<25	<25	140	<120	<1	<1./	<1	<0.0016	<0.0008	No
BH11_0.5-0.6	23.05.2023	3	< 0.3	22	73	(<0.05	20	43	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	< 0.3	<25	<25	<90	<120	<1	<1./	<1	-	-	No
BH12IM_0.3-0.4	23.05.2023	6	<0.3	14	21	33	0.07	4.8	35	<0.3	<0.1	8.0>	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	< 1	<1.7	< 1	-	-	INO
Maximum cor		7	-0.2	29	120	20	0.27	110	04	0.4	0.2	2.5		aiysis 0 1	<0.1	<0.1	<0.2	<25	-25	140.0	120.0	-1	-1.7	-1	0.0019	<0.0008	No
Natural		· ·	<0.5	20	120	39	0.27	110	04	0.4	0.5	3.5	<0.1	<0.1	<0.1	<0.1	<0.5	<20	<20	140.0	130.0	<1	< 1.7	< 1	0.0018	<0.0008	INO
BH1M 2 0-2 1	24.05.2023	5	<0.3	5.6	0/	14	<0.05	1.4	11	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<00	<120	~1	<17	<1			_
BH2 15-16	24.05.2023	8	<0.3	8.4	24	14	<0.05	<0.5	67	<0.3	<0.1	<0.0	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	<1	<1.7	<1		-	
BH4_2.0-2.1	24.05.2023	8	<0.3	4.4	27	10	<0.05	<0.5	5.4	<0.3	<0.1	<0.0	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	<1	<1.7	<1	-	-	-
BH5 13-14	23.05.2023	9	< 0.3	8.1	44	21	<0.00	1	12	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	< 0.3	<25	<25	<90	<120	<1	<1.7	<1	-	-	-
BH7 15-16	23.05.2023	3	< 0.3	4.6	14	11	<0.00	1.9	6	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	< 0.3	<25	<25	<90	<120	<1	<1.7	<1	-	-	-
BH8_0.9-1.0	23.05.2023	7	< 0.3	20	42	17	<0.05	<0.5	46	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	<1	<1.7	<1	-	-	-
												Sta	tistical Ana	alvsis											I		
Maximum cor	centration	9	< 0.3	20	94	21	< 0.05	2	12	< 0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	< 0.3	<25	<25	<90	<120	<1	<1.7	<1	-	-	-
		1				1	1		1		1	NEP	M (2013) C	riteria		1	1	1					1		1		
HIL A - Residentia accessibl	ıl with garden / le soil	100	20	100 Cr(VI)	6,000	300	40	400	7,400	3		300										240		1			
						Source dep	ths (0 m to	<1 m. BGL)				1	3	0.5	160	55	40	45	110				•	•			
HSL A & B - Low to hig	h density residential				:	Source dep	ths (1 m to	<2 m. BGL)					NL	0.5	220	NL	60	70	240								
Soli lexture classi	ncalion – Sanu				:	Source dep	ths (2 m to	<4 m. BGL)					NL	0.5	310	NL	95	110	440								
					:	Source dep	ths (0 m to	<1 m. BGL)					5	0.7	480	NL	110	50	280								
HSL A & B - Low to hig Soil texture class	h density residential				:	Source dep	ths (1 m to	<2 m. BGL)					NL	1	NL	NL	310	90	NL								
Con texture class	incation olay				:	Source dep	ths (2 m to	<4 m. BGL)					NL	2	NL	NL	NL	150	NL								
EILs / ESLs - Urban re open space -	sidential and public Coarse ¹²	100				1,100					0.7		170	50	85	70	105	180	120	300	2,800	180					
EILs / ESLs - Urban re open space-	sidential and public Fine ¹²	100				1,100					0.7		170	65	105	125	45	180	120	1,300	5,600	180					
Management Limits parkland and public of	s – Residential, pen space-Coarse																	700	100	2,500	10,000						
Management Limits	s – Residential, open space-Fine																	800	1,000	3,500	10,000						
HEPA (2020) - NEM	P PFAS (Hil B) 3																								2	20	
Notes:	PA (2020) - NEMP PFAS (Hil B) 3 2 20																										

Results are recorded in mg/kg NEPC 1999 Amendment 2013 'HIL B' - Health based Residential with minimal opportunities for soil access including dwellings with fully and permanenetly paved yard space such as high-rise buildings and apartments. HIL B NEPC 1999 Amendment 2013 'HSL A & B' Health Based Screening Levels applicable for vapour intrusion values applicable for low-high density residential settings. Ecological Investigation Level for urban residential and public open space land use. HSL A & B EIL Ecology Screening Level for urban residential and public open space land use. Not Analysed ESL NC Not calculated Coarse &/or Fine grained soil assessment criteria values were applied, as a conservative approach. EIL criteria is used from Generic added contaminant limits Value dervied from the National Environmental Management Plan for PFAS - Soil Criteria for Investigation - Human Health Based Guidance Values for Residential with minimal opportunities for soil access(HLB) F1 F1 subtract the sum of BTEX concentrations from the C6-C10 fraction. F2 F2 subtract naphthalene from the >C10-C16 fraction. F3 F4 (>C16-C34) (>C34-C40)

Table B.2 - Summary of Groundwater Analytical Results

E25996.E02 - Concord

					Heavy	Metals						ВТ	EX				PAHs			TF	кн	
Sample ID	Date of sampling	As	Cd	Cr (total)	Cu	Pb	Hg	Ni	Zn	Benzene	Toluene	Ethylbenzene	m/p-Xylene	o-Xylene	Total Xylenes	Benzo(a)pyrene	Total PAHs	Naphthalene	F1	F2	F3	F4
Detailed Site Investigation	n	1											1			1						
BH1M		<1	0.5	<1	1	<1	<0.1	2	14	<0.5	0.9	<0.5	<1	<0.5	<1.5	<0.1	<1	<0.1	<50	<60	<500	<500
BH9M	1/6/2023	<1	<0.1	<1	<1	<1	<0.1	32	150	<0.5	6.1	<0.5	<1	< 0.5	<1.5	<0.1	<1	<0.1	73	300	<500	<500
BH12M Statistical Analysis		<1	<0.1	<1	3	<1	<0.1	g	46	<0.5	<0.5	<0.5	<1	<0.5	<1.5	<0.1	<1	<0.1	<50	<60	<500	<500
Maxim	ximum Concentration 0 0.5 0 3 <1 <0.1 32 150 <0.5 6.1 <0.5 0 0 <1.5 <0.1 <1 <0.1 73 300 <50										<500	<500										
GILs																						
NEPC (2013) HSL A&B	Source depths (SAND) from 2m to <4m									800	NL	NL			NL			NL	1000	1000		
NEPC (2013) HSL A&B	Source depths (CLAY) from 2m to <4m									5000	NL	NL			NL			NL	NL	NL		
ANZG (2018) ¹	Marine Water	24 (As III) ⁵ 13 (As V) ⁵	0.2	27 (Cr III) 4.4 (Cr VI)	1.3	4.4	0.1 ²	7 ²	15	700	180	80	75	350 5				70				
NHMRC (2022) ³	Recreational	100	20	500	1000 ⁴	100	10	200	3000 ⁴	10	25 ⁴	34		20	•	0.1						
Notes:	All values are in units of µg/L unle	ess stated oth	herwise.																			
Highlighted GILs HSL D																						
NL	'Not Limiting' - The soil vapour lin	nit exceeds th	ne concent	ration of whi	ch the grour	ndwater can	not dissolve	e any more	of the individ	dual VOC.												
F1 F2 F3 F4	C6-C10 minus BTEX > </td <td></td>																					
1 2 3	ANZG (2018) Australian and New The 99% trigger values have bee recreational water Guidelines an Lindated	n applied for	chemicals	which have	narine wate possible bio ng water G	er Quality. accumulatio	on and seco uniplied by a	ndary poiso a ractor or r	oning effects	, Ref. ANZE	ECC & ARM	CANZ (200	0). ארוועודע מ וא		22) Australia	ан ынкіну	water Guide	nnes, versi	บท อ.7		KQ.	

4 ANZG (2018) Fresh water guideline used when marine criteria is not provided.

Table B3 - Soil RPD Values

				т	RH			ВТ	ΈX					Heavy	Metals			
Sample identification	Description	Date	F1	F2	F3	F4	Benzene	Toluene	Ethylbenzene	Xylene (total)	Arsenic	Cadmium	Chromium (Total)	Copper	Lead	Mercury	Nickel	Zinc
	PQL		50	60	500	500	0.5	0.5	0.5	0.5	1	0.1	1	1	1	0.1	1	5
Detailed Site Investigation	ailed Site Investigation																	
Intra-laboratory Duplicate - Soi	I Investigation																	
BH5_0.6-0.7	Primary soil sample	22/05/2022	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	3	<0.3	5.5	34	15	<0.05	2.8	13
QD1	BFD of BH11_0.5-0.6	23/03/2023	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	3	<0.3	3.1	13	15	<0.05	0.6	3.7
	RPD		NA	NA	NA	NA	NA	NA	NA	NA	0.0%	NA	55.8%	89.4%	0.0%	NA	129.4%	111.4%
Rinsate Blanks																		
QR1	Equipment Rinsate	23/05/2023	<50	<50	<500	<500	<0.5	<0.5	<0.5	<1.5	<1	<0.1	<1	<1	<1	<0.1	<1	<5
Trip Blanks																		
TB1	Soil Trip Blank	Laboratory Prepared	NA	NA	NA	NA	<0.1	<0.1	<0.1	<0.3	NA	NA	NA	NA	NA	NA	NA	NA
Trip Spikes																		
TS1	Soil Trip Spike	Laboratory Prepared	NA	NA	NA	NA	[91%]□	[93%]	[93%]	[93%]	NA	NA	NA	NA	NA	NA	NA	NA

Note:

Primary value <= 20 x PQL AND RPD > 30%, as per AS4482.1 (2005) Primary value > 20 x PQL AND RPD > 50%, as per AS4482.1 (2005)

All results are reported in mg/kg (soil) or μ g/L (water)

F1 = TRH C6-C10 less the sum of BTEX F2 = TRH >C10-C16 less naphthalene F3 = (>C16-C34) F4 = (>C34-C40)

E25996.E02 - Concord

Table B4 - Groundwater RPD Values

				т	RH			ВТ	EX					Heavy	Metals			
Sample Identification	Description	Date	F1	F2	F3	F4	Benzene	Toluene	Ethylbenzene	O-Xylene	Arsenic	Cadmium	Chromium (Total)	Copper	Lead	Mercury	Nickel	Zinc
	PQL		50	60	500	500	0.5	0.5	0.5	1.5	1	0.1	1	1	1	0.1	1	5
Detailed Site Investigation																		
Intra-laboratory Duplicate - Gro	oundwater Investigation																	
BH12M	Primary groundwater sample	1/06/2023	<50	<60	<500	<500	<0.5	<0.5	<0.5	<1.5	<1	0.1	<1	3	<1	<0.1	9	46
GW-QD1	BFD of BH12M	1/00/2023	<50	<60	<500	<500	<0.5	<0.5	<0.5	<1.5	<1	0.1	<1	3	<1	<0.1	9	44
	RPD		NA	NA	NA	NA	NA	NA	NA	NA	NA	0.0%	NA	0.0%	NA	NA	0.0%	4.4%
Inter-laboratory Duplicate - Gro	r-laboratory Duplicate - Groundwater Investigation																	
BH12M	Primary groundwater sample	1/06/2023	<50	<60	<500	<500	<0.5	<0.5	<0.5	<1.5	<1	<0.1	<1	<1	1	<0.1	<1	<5
GW-QT1	BFD of BH12M	1/00/2020	65	<50	<100	<100	<1	<1	<1	<1	<1	0.1	<1	3	<1	<0.05	9	48
	RPD		46.2%	NA	NA	NA	NA	NA	NA	NA	NA	0.0%	NA	133.3%	0.0%	NA	177.8%	179.2%
Rinsate Blanks																		
GW_QR1	Equipment Rinsate	1/06/2023	<50	<60	<500	<500	<0.5	<0.5	<0.5	<1.5	<1	<0.1	<1	<1	<1	<0.1	<1	<5
Trip Blanks																-		
GW_QTB1	Water trip blank	Lab Prepared	-	-	-	-	<0.5	<0.5	<0.5	<1.5	-	-	-	-	-	-	-	-
Trip Spikes	-																	
GWQTS1	Water trip spike	Lab Prepared	-	-	-	-	[98%]	[99%]	[99%]	[99%]	-	-	-	-	-	-	-	-

Note:

Primary value <= 20 x PQL AND RPD > 30%, as per AS4482.1 (2005) Primary value > 20 x PQL AND RPD > 50%, as per AS4482.1 (2005)

All results are reported in mg/kg (soil) or µg/L (water)

F1 = TRH C6-C10 less the sum of BTEX F2 = TRH > C10-C16 less naphthalene F3 = (>C16-C34)F4 = (>C34-C40)

E25996.E02 - Concord

Appendix C – Proposed Development

KEY PLAN

PRELIMINARY

lssu	е		
No.	Date	Description	Chkd
1	17/01/23	PRELIM Schematic Design	AO
2	25/01/23	SCHEMATIC DESIGN	AO
3	02/02/2023	SCHEMATIC DESIGN	SF
4	16/02/2023	SCHEMATIC DESIGN ISSUE	AO
Clie	nt		

Health **NSW** GOVERNMENT Health Infrastructure

Nominated Architect: Andrew Duffin NSW 5602 NBRS & Partners Pty Ltd VIC 51197

Project

nbrs.com.au

ABN 16 002 247 565

Concord FMH

109 Hospital Rd, Concord, NSW 2139, Australia

for HINSW

at

Drawing Title SITE LAYOUT

Date 16/02/2023 2:25:22 PM Scale 1:200@A1

Drawing Reference

22071-A-0200

0 10 20 30 40 50 60 70 80 90 100 Any form of replication of this drawing in full or in part without the written permission of NBRS+PARTNERS Pty Ltd constitutes an infringement of the copyright. © 2022

SCALE: 1:200

Health **NSW** GOVERNMENT | Infrastructure

Project CONCORD REPATRIATION GENERAL HOSPITAL

at 109 HOSPITAL ROAD, NSW 2139

Client

for NSW GOVERNMENT HEALTH & INFRUSTRUCTURE

Drawing Title GROUND FLOOR OVERALL PLAN

Date 14/02/2023 12:13:24 PM Scale 1:200@A1

Drawing Reference 221192-S-07.00 0 10 20 30 40 50 60 70 80 90 100

Appendix D – Groundwater Bore Search

Appendix E – Site Photographs

Photograph 1: View of drilling at the car park

Photograph 2: View of pedestrian and stairs

Photograph 3: View of the fire service building

Photograph 4: View of rampand grass area

Photograph 5: view of the footpath at the other side of the building.

Photograph 6: view of the electricity substation

Appendix F – Borehole Logs

BH ID: BH1M

Loca Clier Job I Shee	nt Lipman Pt No. E25996.GC	il Road / Ltd)3	l, Conco	ord V	Vest, NSW		Started Completed Logged By Review By	24 May 202 24 May 202 JO	3 3 Date Date	24 May 2023
Drill	ing Contractor	Geos	ense Dr	filling	Engineers Surface RL -		Northing	6254460.67	30 (MGA	2020 Zone 56)
Plan	t	Coma	icchio (Geo 2	205 Inclination 90°		Easting	323863.816	4 (MGA 2	2020 Zone 56)
WATER	SAMPLES & FIELD TESTS	DEPTH (m)	GRAPHIC LOG	RL (m AHD)	MATERIAL DESCRIPTION	MOISTURE CONDITION	BACKFILL DETAILS			STANDPIPE DETAILS
	BH1M 0.50-0.95	0.00			ASPHALT: 100mm thick FILL: Silty SAND: fine to medium grained, dark brown with sub-angular to sub-rounded gravels	D	Grout 0.00m - 0.10m			
	SPT 0.50-0.95 8,15,30 N=45	0.60		-	CLAY: low to medium plasticity, pale grey-orange					
GWNE	BH1M_1.50-1.65 SPT 1.50-1.65 18/150 mm HB N=R	1.60			From 1.60m, orange	M < PL	Sand 0.10m - 2.50m			0.0m - 3.0m PVC casing (50mm Ø)
		-					Bentonite 2.50m - 3.00m			
0% Water		3.80 			NO CORE: 1150mm thick					
		4.15 - - - - - - - - - - - - - - - - - - -			SANDSTONE: fine to medium grained, pale grey- orange					3.0m - 6.0m PVC screen (50mm Ø)
90% Water		6-					3.00m - 7.60m			
		7-								
		8-			Terminated at 7.60m. Target Depth Reached.					
			-							
		9								
		10-	1	- his l	og should be read in conjunction with El Austr	alia's a	accompanying explana	tory notes.		

BH ID: BH2

Location 1H Hospital Road, Concord West, NSW Started 24 May 2023 24 May 2023 Lipman Pty Ltd Client Completed Job No. E25996.G03 Date Logged By JO 24 May 2023 Sheets 1 of 2 **Review By** Date Drilling Contractor Geosense Drilling Engineers Surface RL Northing 6254491.6526 (MGA 2020 Zone 56) _ Plant Comacchio Geo 205 Inclination 90° Easting 323813.7977 (MGA 2020 Zone 56) GROUND WATER LEVELS CONSISTENCY / REL. DENSITY SAMPLE RECOVER MOISTURE GRAPHIC LOG RL (m AHD) DEPTH (m) METHOD SAMPLES & FIELD TESTS MATERIAL ORIGIN & OBSERVATIONS MATERIAL DESCRIPTION 0.00 0.10 ASPHALT: 400mm thick FILL: Silty SAND: fine to medium grained, dark brown with sub-angular to sub-rounded gravels, no odour ASPHALT D -BH2_0.50-0.95 SPT 0.50-0.95 4,6,8 N=14 0.60 CLAY: low to medium plasticity, brown RESIDUAL SOIL St GWNE AD/T BH2_1.50-1.72 SPT 1.50-1.72 7,8/75 mm HB N=R M < PL 2 -3.00 Log continued on next page. 4 5-6 7 8-9-

BH ID: BH2

Location 1H Hospital Road, Concord West, NSW Started 24 May 2023 Lipman Pty Ltd Client Completed 24 May 2023 Job No. E25996.G03 Logged By Date JO 24 May 2023 Sheets 2 of 2 **Review By** Date **Drilling Contractor** Geosense Drilling Engineers Surface RL Northing 6254491.6526 (MGA 2020 Zone 56) _ Plant Comacchio Geo 205 Inclination 90° 323813.7977 (MGA 2020 Zone 56) Easting ESTIMATED STRENGTH Is(50) ▼ - Axial ▽ - Diametral FRACTURE SPACING WEATHERING GRAPHIC LOG Flush Return £ RL (m AHD) RQD % METHOD TCR % DISCONTINUITIES & ADDITIONAL DATA DEPTH (MATERIAL DESCRIPTION VL 0.1 30 300 3000 3000 0 Log continued from previous page. 2 3. SHALE: dark grey-brown 3.15: JT 1° PR SM CN 3.25: JT 5° PR SM CN 3.56: JT 5° PR SM CN DW 78 31 3.84: JT 45° PR SM CN 4 4.20: JT 10° PR SM CN NO CORE: 360mm thick 4.24 _ 4.60 SHALE: dark grey-brown 4.84: JT 5° CU SM CN 4.91: JT 45° CU SM CN 90% Watei 5 NMLC DW 5.23: JT 5° PR SM CN 67 15 5.50 5.58 SANDSTONE: fine to medium grained, pale grey NO CORE: 530mm thick 6 SANDSTONE: fine to medium grained, pale grey 6.11 100 96 6.68: JT 20° PR SM CN 6.72: JT 20° PR SM CN 6.92: JT 45° PR SM CN sw 7 Terminated at 7.24m. Target Depth Reached. 8-9 10

BH ID: BH3M

Loca	tion 1H Hospita	al Roac	l, Conco	ord V	Vest, NSW			Started	23 May 20	23	
Clier	it Lipman Pt	y Ltd						Completed	23 May 20	23	
Job I	No. E25996.GO)3						Logged By	JO	Date	23 May 2023
Shee	ets 1 of 1							Review By	COE 4004 C	Date	2022 7 5 5
Drill	ng Contractor	Geos	ense Di	rilling	g Engineers Surface RL -			Northing	6254391.6	565 (MGA	2020 Zone 56)
Plan	t	Coma	acchio (Geo 2	205 Inclination 90°		1	Easting	323860.65	92 (MGA 2	2020 Zone 56)
WATER	SAMPLES & FIELD TESTS	DEPTH (m)	GRAPHIC LOG	RL (mAHD)	MATERIAL DESCRIPTION	MOISTURE	BACKF	ILL DETAILS			STANDPIPE DETAILS
		0.80		Ē	FILL: Clayey SAND: fine to medium grained, dark brown	D		Grout 0.00m - 0.10m			
NE A	BH9M_0.50-0.95 SPT 0.50-0.95 4,6,8 N=14	0.30			CLAY: low to medium plasticity, orange-brown			0			
GV	BH9M_1.50-1.95 SPT 1.50-1.95 6,7,12 N=19	1.80			From 1.80m, pale grey-orange	M < PL		Sano 0.10m - 2.50m			0.0m - 3.0m PVC casing (50mm Ø)
		2.52 3- 3- 3.74			SANDSTONE: fine to medium grained with iron staining and pale grey clay seams SANDSTONE: fine to medium grained, pale grey-		-	Bentonite 2.50m - 3.00m			
%06		4			From 4.54m, pale grey-brown			Sand 3.00m - 6.00m			3.0m - 6.0m PVC screen (50mm Ø)
		6			Terminated at 6.00m. Target Depth Reached.						

BH ID: BH4

Location 1H Hospital Road, Concord West, NSW Started 23 May 2023 Completed 23 May 2023 Lipman Pty Ltd Client Job No. E25996.G03 Date Logged By JO 23 May 2023 Sheets 1 of 2 **Review By** Date Drilling Contractor Geosense Drilling Engineers Surface RL Northing 6254416.9818 (MGA 2020 Zone 56) Plant Comacchio Geo 205 Inclination 90° Easting 323885.7601 (MGA 2020 Zone 56) GROUND WATER LEVELS CONSISTENCY / REL. DENSITY SAMPLE RECOVER' MOISTURE DEPTH (m) GRAPHIC LOG RL (m AHD) METHOD SAMPLES & FIELD TESTS MATERIAL ORIGIN & OBSERVATIONS MATERIAL DESCRIPTION 0.00 FILL: Silty SAND: fine to medium grained, dark brown trace sub-angular to sub-rounded gravels FILL D -BH4_0.50-0.95 SPT 0.50-0.95 8,6,12 N=18 0.70 CLAY: low to medium plasticity, pale grey-orange RESIDUAL SOIL VSt GWNE AD/T BH4_1.50-1.85 SPT 1.50-1.85 14,16,3/50 mm HB N=R M < PL 2-. 2.70 Log continued on next page. 3. 4-5-6 7 8-9-

BH ID: BH4

Loca	tion	1H H	ospita	al Roa	id, Coi	ncord	West, NSW			:	Star	teo	d 23 May 2023					_
Clien	t	Lipm	an Pty	y Ltd							Com	npl	eted 23 May 2023					
Job N	lo.	E259	96.G0)3						I	Logg	geo	By JO Date 23 May	20	23			
Shee	ts	2 of 2	<u>,</u>	6		D .III:					Revi	iev	v By Date					
Drilli	ng Co	ntrac	tor	Geo	sense	Drillir	ng Engineers Surface RL -				Nort	thi	ng 6254416.9818 (MGA 2020 Zo	ne	56))		
Plant				Com	nacchi	o Geo T	205 Inclination 90°	1		STIM	East	ing	323885.7601 (MGA 2020 Zon	e 5	6)			_
METHOD	lush Return	TCR %	RQD %	OEPTH (m)	GRAPHIC LOG	st (m AHD)	MATERIAL DESCRIPTION	EATHERING	2	STREI Is(5 V - A 7 - Dia	NGTH 50) Axial ametra	, 1 1	DISCONTINUITIES & ADDITIONAL DATA	F	FRAG			
	ш			0-				≥	٦,	ΞĒ	ΞĦ	EH		30	; 00	300	302	3
							SANDSTONE: fine to medium grained nale grey with iron											
				-		E	staining and clay seams	XW	Н				2.86: JT 3° PR SM_CN 2.91: JT 0° PR SM_CN					1
				3-		-		DW					2.31. 31 3 1 1 1 1 3 1 3					
				3.40	/ \	+	NO CORE: 900mm thick						3.33: JT 3° PR SM CN					
Q	/ater	96	28	4	$\left \right\rangle$			-										
WN	V %06			4.30 _		-	SANDSTONE: fine to medium grained, pale grey with iron staining and clay seams	DW					4.46: JT 1° PR SM CN 4.74: JT 1° PR SM CN 4.83-4.87: CS PR SM CN					
				5		-							5.04: JT 1° PR SM CN 5.10: JT 0° PR SM CN 5.23: JT 10° PR SM CN 5.27: JT 1° PR SM CN					
		100	78			-		FR					5.87: JT 10° PR SM CN					
				8 7 7 8 8 9 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			Terminated at 6.00m. Target depth reached.											

BH ID: BH5

Loca	tion	1H Hospital Road, Cor	cord	d Wes	st, NSW	/	St	tarted	23	3 May	2023
Job I	nt No.	Eipman Pty Ltd F25996.G03						omplete	d 2: / JC	3 May)	2023 Date 23 May 2023
Shee	ets	1 of 2					Re	leview By	,		Date
Drilli	ng Co	ontractor Geosense	Drill	ing Er	ngineer	s	Surface RL - No	lorthing	62	25441	5.7362 (MGA 2020 Zone 56)
Plan	t	Comacchio	o Ge	o 205	;		Inclination 90° Ea	asting	32	23823.	.2479 (MGA 2020 Zone 56)
METHOD	GROUND WATER LEVELS	SAMPLES & FIELD TESTS	SAMPLE RECOVERY	DEPTH (m)	GRAPHIC LOG	RL (mAHD)	MATERIAL DESCRIPTION		MOISTURE	CONSISTENCY / REL. DENSITY	MATERIAL ORIGIN & OBSERVATIONS
				0.00		-	ASPHALT: 150mm thick FILL: Silty SAND: fine to medium grained, brown with sub-	o-angular	-	-	ASPHALT
		BH4_0.50-0.60 BH4_0.50-0.95 SPT 0 50-0 95		0.60		-	Sandy CLAY: low to medium plasticity, pale grey-orange, s	sand is	D	-	RESIDUAL SOIL
		4,10,16 N=26		- - 1		- 	fine to medium grained			VSt	
AD/T	BWNE	BH4_1.50-1.68 SPT 1.50-1.68 10,3/35 mm HB N=R		1.40		-	CLAY: low to medium plasticity, pale grey-orange				
	0			2		- - - -		Ν	И < PL		
						-				н	
		BH4_3.00-3.45 SPT 3.00-3.45 20,16,19 N=35		3							
				-	-	_	Log continued on next page.				
				- - - - 8-		 					
				-		-					
						- - - -					
			Thi	- - - - - - - - - - - - - - - - - - -	should	- - be r	ead in conjunction with EI Australia's accompanyir	ing explar	natory	notes	

BH ID: BH5

Client Lipman Pty Ltd Completed 23 May 2023	
Job No. E25996.G03 Logged By JO Date	23 May 2023
Sneets 2 of 2 Review By Date	2020 Zana E()
Draining Contractor Geosense Draining Engineers Surface RL - Northing 6254415.7362 (MGA	2020 Zone 56)
Plant Comacchio Geo 205 Inclination 90° Easting 323823.2479 (MGA .	2020 Zone 56)
$\begin{array}{c c} \Box & \Box & \Box & \Box \\ \Box & \Box & \Box & \Box & \Box \\ \Box & \Box &$	SPACING
$\begin{bmatrix} \Psi & \chi &$	
0 Log continued from previous page.	
SANDSTONE: fine to medium grained hale grey-orange	
U ↓	
≥ 8 2 0° 4.73; JT 5° PR SM CN	
FR FR 5.15: JT 1° PR SM CN	
6 Terminated at 6.00m. Target Depth Reached.	
This log should be read in conjunction with ELAustrolia's accompanying evaluations paters	

BH ID: BH6M

Location 1H Hospital Road, Concord West, NSW Started 22 May 2023 Completed Lipman Pty Ltd 22 May 2023 Client Job No. E25996.G03 Logged By Date JO 22 May 2023 Sheets 1 of 2 **Review By** Date Drilling Contractor Geosense Drilling Engineers Surface RL Northing 6254392.3215 (MGA 2020 Zone 56) Plant Comacchio Geo 205 Inclination 90° Easting 323853.4352 (MGA 2020 Zone 56) GROUND WATER LEVELS CONSISTENCY / REL. DENSITY SAMPLE RECOVER' MOISTURE GRAPHIC LOG RL (m AHD) DEPTH (m) METHOD SAMPLES & FIELD TESTS MATERIAL ORIGIN & OBSERVATIONS MATERIAL DESCRIPTION 0.00 FILL: Sandy CLAY: low to medium plasticity, brown-orange, with sub-angular to sub-rounded gravels FILL BH12M_0.50-0.95 SPT 0.50-0.95 4,5,6 N=11 D -1-GWNE AD/T BH12M_1.50-1.95 SPT 1.50-1.95 3,5,7 N=12 RESIDUAL SOIL Silty CLAY: low to medium plasticity, pale grey-orange 1.60 M < PL St 2 2.30 Log continued on next page. 3. 4 5-6 7 8-9-

BH ID: BH6M

Location Client Job No. Sheets		1H Hospital Road, Concord West, NSW Started 22 May 2023 Lipman Pty Ltd Completed 22 May 2023 E25996.G03 Logged By JO Date 2 2 of 2 Review By Date 2								22 May 2023 eted 22 May 2023 I By JO Date 22 May v By Date 22 May	1ay 2023								
Drilli	ng Co	ontractor Geosense Drillin				Drilli	ng Engineers Surface RL -	ineers Surface RL -				Northing 6254392.3215 (MGA 2020 Zone 56							
Plant	:	1		Com	nacchi	o Geo	205 Inclination 90°	East				ting	323853.4352 (MGA 2020 Zon	e 5	56)				
METHOD	Flush Return	TCR %	KQD %	DEPTH (m)	GRAPHIC LOG	RL (mAHD)	MATERIAL DESCRIPTION	WEATHERING	STRENGTH Is(50) ▼ - Axial ▽ - Diametral				DISCONTINUITIES & ADDITIONAL DATA	FRACTURE SPACING					
						-	Log continued from previous page.												
	0%			-		F	SANDSTONE: fine to medium grained, pale grey	xw											
NMILC		46	25	2.73 _ 3 - - - - - - - - - - - - - - - - - -	2.73		NO CORE: 1470mm thick SANDSTONE: fine to medium grained, pale grey-orange	-		_			4.44- 17.2° PD CM, CN						
				-		E		DW					4.44: JT 3 PR SM CN						
		100	100				Terminated at 7 20m. Target depth reached	sw					 4.74: JT 1° PR SM CN 4.80: JT 3° PR SM CN 5.16: JT 3° PR SM CN 5.40: JT 0° PR SM CN 5.63: JT 1° PR SM CN 6.20: JT 0° PR SM CN 6.62: JT 0° PR SM CN 6.62: JT 0° PR SM CN 7.08: JT 0° PR SM CN 						
				-		F	Terminated at 7.20m. Target depth reached.												
				8- 8- 9- - - - - - - - - - - - - - - - -															

BH ID: BH6M

Location 1H Hospital Road, Concord West, NSW									Started 22 May 2023				
Client Lipman Pty Ltd								Completed	22 May 2023		22.14 2025		
Job	No. E25996.GO	3						Logged By	JO	Date	22 May 2023		
Drilli	ing Contractor	Georg	anco Dr	illing	Engineers Surface BL -			Northing	625/392 32		2020 Zone 56)		
Diam		Como						Facting	2224592.52		2020 Zone 50)		
Plan		Coma		1			Easting	323853.4352 (MGA 2020 Zone 56)					
WATER	SAMPLES & FIELD TESTS	DEPTH (m)	GRAPHIC LOG	RL (mAHD)	MATERIAL DESCRIPTION	MOISTURE CONDITION	BACKFIL	L DETAILS			STANDPIPE DETAILS		
		0.00		-	FILL: Sandy CLAY: low to medium plasticity, brown- orange, with sub-angular to sub-rounded gravels		0.	Grout .00m - 0.10m					
GWNE	BH12M_0.50-0.95 SPT 0.50-0.95 4,5,6 N=11					D		Sand					
	BH12M_1.50-1.95 SPT 1.50-1.95 3,5,7 N=12	1.60			Silty CLAY: low to medium plasticity, pale grey- orange	M < PL	0.	.10m - 2.50m			0.0m - 3.0m PVC casing (50mm Ø)		
		2		-				- - -					
		2.73			NO CORE: 1470mm thick	-		Bentonite					
		3-					2.	.50m - 3.00m	-				
		-											
		4-			SANDSTONE: foo to modium grained note gray	-			-				
%		4.20_		-	orange						3.0m - 6.0m PVC screen (50mm Ø)		
0		5		-			3.	Sand . .00m - 7.20m					
		-		-				-	-				
		6-		-				- - -					
		-		-									
	_	7		-	Terminated at 7 20m Tarriet denth reached	_		- -					
		-		-									
		 8 		-									
		-		-									
		9		-									
		-		-									
		10.		-									
		- 10-	Т	his l	og should be read in conjunction with EI Austr	alia's a	accompany	ing explanat	tory notes.				

BH ID: BH7

Loca Clier Job I Shee	.ocation 1H Hospital Road, Concord West, NSV Client Lipman Pty Ltd ob No. E25996.G03 iheets 1 of 2			st, NSW	/	Star Con Log Rev	arted mpletee gged By view By	24 d 24 JC	4 May 4 May)	2023 2023 Date 24 May 2023 Date			
Drilli	ng Co	ontractor Geosense	Drill	ing Er	nginee	rs	Surface RL - Nor	rthing	62	25444	5.9364 (MGA 2020 Zone 56)		
Plan	t	Comacchi	o Ge	o 205			Inclination 90° East	Easting 323879.7716 (MGA 2020 Zone 56)					
METHOD	GROUND WATER LEVELS	SAMPLES & FIELD TESTS	SAMPLE RECOVERY	DEPTH (m)	GRAPHIC LOG	RL (mAHD)	MATERIAL DESCRIPTION		MOISTURE CONDITION	CONSISTENCY / REL. DENSITY	MATERIAL ORIGIN & OBSERVATIONS		
		BH7_0.50-0.95 SPT 0.50-0.95 5,5,13 N=18		0.00			ASPHALT: 100mm thick FILL: Silty SAND: fine to medium grained, dark brown with su angular to sub-rounded gravels	sub-	D	-			
AD/T	GWNE	BH7_1.50-1.80 SPT 1.50-1.80 8,21/150 mm HB N=R		0.80_			CLAY: low to medium plasticity, brown-orange trace sub-angit to sub-rounded gravels From 1.60m, pale grey	gular		VSt	RESIDUAL SUIL		
		8,21/150 mm HB N=R								-			
				3.00 ⁻ - - - - - - - - - - - - - - - - - -			Log continued on next page.						

BH ID: BH7

Loca Clien Job N	tion t lo.	1H H Lipm E259	ospita an Pt 96.G(al Roa y Ltd)3	id, Co	ncord	West, NSW	Started 24 May 2023 Completed 24 May 2023 Logged By JO Date 24 May 2023						
Shee	ts	2 of 2	2	Caa		Deillia	og Engineers Suufaas Di				R	evie	w By Date	
Plant		Jintrad		Com	nacchi	o Geo	205 Inclination 90°				E	astin	ag 323879.7716 (MGA 2020 Zone 56)	
METHOD	Flush Return	TCR %	RQD %	DEPTH (m)	GRAPHIC LOG	RL (mAHD)	MATERIAL DESCRIPTION				MATERIAL DESCRIPTION			
				2 			Log continued from previous page.							
NMLC	90% Water	93	09	3.20 			NO CORE: 200mm200mm thick SANDSTONE: fine to medium grained, pale grey-brown	sw					3.36: JT 45° PR SM CN 3.55: 45° PR SM CN 3.66: JT 5° UN SM CN 3.80: JT 5° PR SM CN 3.94: JT 10° PR SM CN 4.07: JT 10° PR SM CN 4.64: JT 10° PR SM CN 4.55: JT 10° PR SM CN 5.5: JT 10° PR SM CN 5.5: JT 10° PR SM CN 5.15: JT 15° PR SM CN 5.15: JT 15° PR SM CN 5.40: JT 10° PR SM CN 5.47: JT 1° PR SM CN 5.40: JT 10° PR SM CN 5.80: JT 5° UN SM CN 5.80: JT 5° UN SM CN 5.90: JT 30° PR SM CN	
				8 9 9 9 10 10 10 10 10 10 10 10 10 10			Terminated at 6.00m. Target Depth Reached.							

BH ID: BH8

Loca Clien	tion nt	1H Hospital Road, Cor Lipman Pty Ltd	ncorc	d Wes	st, NSV	V		Started Complete	2 ed 2	3 May 3 May	2023 2023
Job I	No.	E25996.G03						Logged B	y A	S	Date 23 May 2023
Shee	ets ing Co	1 of 1					Surface RI	Review B	у 6	25440	Date 7 2315 (MGA 2020 Zone 56)
Plan	t t	Hand auge	۰r				Inclination 90°	Fasting	3	23440	8218 (MGA 2020 Zone 56)
METHOD	GROUND WATER LEVELS	SAMPLES & FIELD TESTS	SAMPLE RECOVERY	, DEPTH (m)	GRAPHIC LOG	RL (m AHD)	MATERIAL DESCRIPTION		MOISTURE CONDITION	CONSISTENCY / REL. DENSITY	MATERIAL ORIGIN & OBSERVATIONS
		BH8_0.20-0.30		0.00		-	FILL: Sandy CLAY: low to medium plasticity, fine to med grained sand, brown, no odour	dium	D - M		FILL
		BH8_0.50-0.60		-		-			M - W		
		BH8_0.90-1.00		0.70			Silty CLAY: medium plasticity, orange, no odour		D		RESIDUAL SOIL
							Terminated at 1.00m. Target Depth Reached.				

BH ID: BH9

Loca Clien	tion t	1H Hospital Road, Con Lipman Pty Ltd	icorc	l Wes	t, NSW	/	S	Started Complete	23 ed 23	3 May 3 May	2023 2023		
Shee	vo. ts	1 of 1					L	Logged By Review By	Y A V	5	Date 23 May 2023 Date		
Drilli	ng Co	ntractor Hartgeo					Surface RL - N	Northing	6	6254420.9540 (MGA 2020 Zone 56)			
Plant	t	Ute-Moun	ted I	Rig			Inclination 90° E	Easting	3	23870	.8096 (MGA 2020 Zone 56)		
METHOD	GROUND WATER LEVELS	SAMPLES & FIELD TESTS	SAMPLE RECOVERY	DEPTH (m)	GRAPHIC LOG	RL (mAHD)	MATERIAL DESCRIPTION		MOISTURE CONDITION	CONSISTENCY / REL. DENSITY	MATERIAL ORIGIN & OBSERVATIONS		
		BH3_0.20-0.30		0.00_ 0.04_ 		-	ASPHALT: 40mm thick FILL: Sandy GRAVEL: fine to coarse sub-angular to sub- gravels, fine to medium grained sand, brown, no odour	rounded	D - M		ASPHALT		
		BH3_0.80-0.90		0.50		-	Silty CLAY: medium plasticity, with fine sand, orange mott grey, no odour	tled pale	D		RESIDUAL SOIL		
		BH3_0.00-0.90		0.9 <u>0</u> 		_	SANDSTONE: extremely weathered, orange, no odour				BEDROCK		
							Terminated at 1.30m. Target Depth Reached.						

BH ID: BH9 (enviro)

Location 1H Hospital Road, Concord West, NSW 23 May 2023 Started Completed Client Lipman Pty Ltd 23 May 2023 Job No. E25996.G03 Logged By AS Date **Review By** Sheets 1 of 1 Date **Drilling Contractor** Surface RL Northing 6254403.6111 (MGA 2020 Zone 56) -_ Plant Hand auger Inclination 90° Easting 323864.6224 (MGA 2020 Zone 56) GROUND WATER LEVELS CONSISTENCY / REL. DENSITY SAMPLE RECOVERN MOISTURE DEPTH (m) GRAPHIC LOG RL (m AHD) METHOD SAMPLES & FIELD TESTS MATERIAL ORIGIN & OBSERVATIONS MATERIAL DESCRIPTION 0.00 TOPSOIL: Silty CLAY: medium plasticity, brown with trace rootlets, no odour TOPSOIL BH9_0.10-0.20 D - M 0.40 Silty CLAY: medium plasticity, orange, no odour RESIDUAL SOIL BH9_0.60-0.70 Terminated at 0.70m. Target Depth Reached. 1. 2 3-4

BH ID: BH10

Location 1H Hospital Road, Concord West, NSW Started 23 May 2023 Completed Lipman Pty Ltd 23 May 2023 Client Job No. E25996.G03 Logged By Date 23 May 2023 AS Sheets 1 of 1 **Review By** Date **Drilling Contractor** Surface RL Northing 6254416.3297 (MGA 2020 Zone 56) -Plant Inclination 90° Easting 323869.7010 (MGA 2020 Zone 56) Hand Auger GROUND WATER LEVELS CONSISTENCY / REL. DENSITY SAMPLE RECOVERN MOISTURE DEPTH (m) GRAPHIC LOG RL (m AHD) METHOD SAMPLES & FIELD TESTS MATERIAL ORIGIN & OBSERVATIONS MATERIAL DESCRIPTION 0.00 FILL: Sandy CLAY: low to medium plasticity, fine to medium grained sand, brown, no odour FILL BH10_0.20-0.30 0.30 Silty CLAY: medium plasticity, brown with trace rootlets, no odour RESIDUAL SOIL D - M 0.50 From 0.50m to 0.80m, orange, no odour BH10_0.70-0.80 Terminated at 0.80m. Target Depth Reached. Terminated at 0.80m. Target Depth Reached. 1 2 3-4

BH ID: BH11

Loca Clien	tion It	1H Hospital Road, Cor Lipman Pty Ltd	ospital Road, Concord West, NSW an Pty Ltd				2	Started 23 May 2023 Completed 23 May 2023				
Job N	No.	E25996.G03					L	Logged By	y A	S	Date	23 May 2023
Shee	ets Ing Co	1 of 1					Surface Pl	Review By	y	25112	Date	2020 Zono 56)
Plan	t t	Ute-Moun	ted I	Riø				Fasting	3	23443	1033 (MGA 2	2020 Zone 56)
METHOD	GROUND WATER LEVELS	SAMPLES & FIELD TESTS	SAMPLE RECOVERY	DEPTH (m)	GRAPHIC LOG	RL (m AHD)	MATERIAL DESCRIPTION		MOISTURE	CONSISTENCY / REL. DENSITY	MAT & Ol	ERIAL ORIGIN SSERVATIONS
		BH5_0.20-0.30 BH5_0.60-0.70		0.00_ 0.04_ 0.40_ 0.40_ 			ASPHALT: 40mm thick FILL: Sandy GRAVEL: fine to coarse sub-angular to sub- gravels, fine to medium grained sand, brown, no odour FILL: Gravelly CLAY: low to medium plasticity, fine to coa rounded gravels, with fine to medium sand, pale orange r grey, no odour	-rounded arse sub- mottled	D - M		ASPHALT FILL	
		BH5_1.30-1.40		0.9p			SANDSTONE: extremely weathered, orange, no odour		D		BEDROCK	
				3								

BH ID: BH12

Location 1H Hospital Road, Concord West, NSW Started 23 May 2023 Completed Client Lipman Pty Ltd 23 May 2023 Job No. E25996.G03 Logged By Date 23 May 2023 AS **Review By** Sheets 1 of 1 Date **Drilling Contractor** Surface RL Northing 6254421.6620 (MGA 2020 Zone 56) -Plant Hand auger Inclination 90° Easting 323870.1022 (MGA 2020 Zone 56) GROUND WATER LEVELS CONSISTENCY / REL. DENSITY SAMPLE RECOVERN MOISTURE DEPTH (m) GRAPHIC LOG RL (m AHD) METHOD SAMPLES & FIELD TESTS MATERIAL ORIGIN & OBSERVATIONS MATERIAL DESCRIPTION 0.00 FILL: Gravelly SAND: fine to medium grained sand, fine to coarse sub-angular to sub-rounded gravels, brown, no odour FILL BH6_0.10-0.20 0.20 FILL: SAND: fine to medium sand, no odour BH6_0.50-0.60 D - M BH6_0.60-0.70 RESIDUAL SOIL 0.80 Silty CLAY: medium plasticity, orange mottled pale grey, no odour BH6_0.90-1.00 Terminated at 1.00m. Target Depth Reached. 2 3-4

Appendix G – Field Data Sheets

Daily Inspection / Work Summary Card -Remediation & Validation Form OP 005a (Rev 2)

El Australia Suite 6.01, 55 Miller Street PYRMONT, NSW, 2009

ABN 42 909 129 957 E service@eiaustralia.com.au W www.eiaustralia.com.au T 02 9516 0722

Project Number:	E25996	Engineer Name:	AS	Page:	of	
Date:	1623	Time ON Site:	7:30			
Travel Time:	30+30	Time OFF Site:	12:00			
Site Address/Locati	ion: Concord	L Howited				
Climatic Conditions	·· Muca	unt T				
Completed Works:	004.0					
	INF					
	ara.					
	OW OD1	66 1:				
	GW-QKI rar	n off dipper				
Comments / Issues	/ Conclusions / Furt	ther Testing Required / A	Actions to be Undertake	n / Timing of Actions:		
		1				
	/ /					
Signed by /	<u>A. C. /</u>	- Al-				
	$\tau \sim \sim$	N				

Daily Remediation and Validation

El Australia Suite 6.01, 55 Miller Street PYRMONT, NSW, 2009

ABN 33 102 449 507 E service@eiaustralia.com.au W www.eiaustralia.com.au T 02 9516 0722

CALIBRATION CERTIFICATE FOR PHOTO IONISATION DETECTOR

Instrument: Mini RAE 3000
Serial Number: 592-906667 - E I PID02 G OR 592-901345 - EI PID03 G
Instrument Conditions:
Calibration and chapter leabutuland
Calibration gas species: isobutyiene.
Calibration gas concentration:ppm
Gas bottle number: Bump test pasced
This PID has been calibrated to Isobutylene gas with the span concentration displayed as
ppm atppm span setting (allowable range +/-10ppm from span setting).
The PID is initially zero calibrated in fresh air.
Remaining gas in bottle:psi (if reading is <250 psi, notify Equipment Manager to arrange new gas
bottle order)

The above detector was calibrated in accordance with manufacturer's specifications.

Signed:	<u>15</u> k	<u>A</u>
Date:	1/6/23	
Time:	3:00 an	

WATER	SAMPLING	FIELD	SHEET
-------	----------	-------	-------

			11						C	Jaus	uand		
Site Add	ress: (on	ord flose	rital				Job Number: E25996						
Client:		-					Date: /	16/23					
Field Sta	ff:						Sampling	Location ID	BHI				
Well Loc	ation:						Round No	o:					
MEDIUM			Groundwa	ter 🗆	Surface Wa	ater	□Stormw	/ater □	Other:				
SAMPLI		INFO											
Well Inst	allation Da	ite:					Stick up (down (m): -0,0 4 (+ above ground - below ground)						
Initial We	ell Depth (n	nBTOC):					Screen Interval (mBTOC):						
Previous	Sampling	Date:					Previous	SWL (mBTC)C)·				
PID REA	DINGS	Dato.					riotiduo						
PID Hea	dsnace (nr		7.7.				PID Back	around (nor	1)· 17.0				
PID Brea	thing Space	ce (nnm).	ົ້				T ID Baok		.). U.S				
PRF PU	RGF	50 (ppm).	0.0										
Total We	ell Denth (n		5.40				Well Hea	d Condition:	(interest				
SWL (ml		1.89	0-10				Water Co	olumn (m).	2 51				
PHASE	SFPARATI		OCARBO	NS (PSH)	_		Trator 00		2.2	/			
Depth to	PSH (mR1						PSH Vieu	ally Confirm	ed (Bailer)				
PSH Thi	ckness (mr	n) [.]	\sim		r Si i Visualiy Commed Baller).								
Field File	tered		-										
		RÎ					No						
							(Request lab 0.45 µm filter the sample,						
FUNGE	a Mothod	FLC			Doriotalti		□Submersible □Other [.]						
Dopth of				. 15	Pensialli	C L			Jotner.	<u> </u>			
Depth of). 4.9 :). /					. T:					
Pump Pr	Canaditiana	guiator (ps					Discharge	e Timer:					
vveather	Conditions	<u>s:</u> D	Vertur			Cycle:							
Pump on		3.34 DADAME				Pump off		2					
WAIER Droho M			A AC				Burn To	at Data and '	Timo:				
Prope IVI			-				nH						
Time	Volume	SWL (mbtoc)	(°C)	EC (uS/cm)	Redox (mV)	DO (mg/l)	(units) (units) (units) (units) (units) (units) (units)						
8:36	0.5	2.08	19.81	1792 -31.6 0.00 7.02 his						10,000			
1 9:40	(2)	7.20	19.27	1727	-104 4	0.00	210	Drange 1					
D- 14	1.5	7.30	19.36	1714	201	0.00	75	Ĭ			1		
0.118	20	241	10 5/0	1696	-2020	0.00	7.21						
8.40	25	2.11	19 1.11	1692	-2091	0.00	7.74			./			
0.5L	6.7	6.10	11.44	1005	-001.5	0.0-		Y	$-\psi$	U/	\downarrow		
·													
		ļ			ļ								
Stal	oilisation ra	ange:	±0.2°C	±3%	±20mV	±10%	±0.2						
3 con	secutive re	adings		/0		1.070							
OTHER	COMMEN	TS/OBSEF	RVATIONS	S:									
SIGNAT		4 / ,											
SIGNAT		SK	Ħ/J										
	<u> </u>		-										

WATER SAMPLING FIELD SHEET

			11					elaustialia					
Site Addr	ess: (on	ord floss	oital				Job Num	ber: F7,5996					
Client:		- 7	<u> </u>				Date: 1	11/2.2					
Field Staf	f·						Sampling	Location ID RL/9					
	ntion:						Pound N						
		<u>.</u>	Croundur	tor D	Surfage W/	otor							
			Glounuwa			alei							
							Ctick up /	AFring (m): 0.08 (i shows around halow around)					
								(1): 0:05 (+ above ground - below ground)					
Initial We	II Depth (r	nBTOC):					Screen Interval (mBTOC):						
Previous	Sampling	Date:					Previous	SWL (mBTOC):					
PID REA	DINGS		400 0				I						
PID Head	lspace (pp):	1240				PID Back	ground (ppm): 0.0					
PID Breat	thing Space	ce (ppm):	0.0										
PRE PUR	GE							<u> </u>					
Total Wel	I Depth (n	nBTOC):	5.97				Well Hea	d Condition: Good					
SWL (mB	TOC):	1.8	<u>n</u>		Water Co	olumn (m):							
PHASE S	EPARAT	ED HYDR	OCARBO	NS (PSH)									
Depth to	PSH (mB1	FOC):					PSH Visu	ally Confirmed (Bailer):					
PSH Thic	kness (mr	m):	\sim										
Field Filt	ered												
Yes (0.45	μm)	Ø					No	(Request lab 0.45 µm filter the sample)					
		PLE						(. [
Sampling	Method			ər l	Z Peristalti	ic 🗆	Submersil	ole DOther:					
Depth of	Pump Inle	t (mBTOC	.)· L	ເຄ			Fill Timer						
Pump Pre		aulator (ns	<u>/·</u>				Discharge	- Timer:					
Weather	Condition		hucenst				Cyclo						
Dump on	time	$\frac{5}{0.6}$					Dump off	timo: 11:28					
			TEDE				Fumpon						
Probe Ma	VALIT I	odal: UD	IERS				Bump To	st Date and Time:					
FIDDE Ma			-										
Time	Volume (L)	SWL (mbtoc)	Temp (°C)	EC (µS/cm)	Redox (mV)	DO (mg/L)	pH (units)	Comments (colour, turbidity, odour, sheen etc.)					
11:00	0.5	2.20	18,94	3782	-788.2	0.00	5.84	manage Wigh MD slight sheen					
11:04	1.0	2.35	19.63	4487	-359.7	0.00	5-56						
11:08	1.5	248	1975	4575	- 3709 4	0.00	5.44						
11:12	2.0	260	19.77	4413	-351.6	0.00	5.41						
11.		2.00	/ 1= / /	11.2				· • • •					
		+	-	+	+								
		+		<u> </u>	+								
				<u> </u>	<u> </u>								
		-											
			<u> </u>										
				ļ	ļ								
		<u> </u>	<u> </u>										
Stab 3 cons	ilisation ra ecutive re	ange: adings	±0.2°C	±3%	±20mV	±10%	±0.2						
OTHER C	OMMEN	TS/OBSEF	RVATION	S:	(_		- G.7					
				silt	trom	~ 4.1	3m-75	, sample @ 4.0m					
				~				Rrl					
		Ac I	10					buildress buil					
SIGNATU		50	H/										

WATER SAMPLING FIELD SHEET

			11						Claus	strand	a			
Site Addre	ess: (on	ord flose	oital				Job Num	ber: E7.5996						
Client:							Date: /	16/23						
Field Staf	f:						Sampling	Location ID 31/17)					
Well Loca	ation:						Round N	<u>,</u>	/					
			Groundwa	ater DS	Surface W	ater		vater DOther						
			orounawa											
Woll Insta							Stick up /	$(\overline{d} \overline{b} w \overline{p} (m)) = 0$	(+ above	e around - belc	ow around)			
	III Dooth (r						Stick up (down (m). CP. (+ above ground - below ground)							
		Deter					Screen Interval (mBTOC):							
Previous	Sampling	Date:					Previous	SVVL (MBTOC):						
	DINGS								-					
PID Head	Ispace (pp	<i>i</i> m):	0.0				PID Back	(ground (ppm):	Ð					
PID Breat	thing Space	;e (ppm):	0.0											
PRE PUR	GE							Č	0					
Total Wel	I Depth (m	nBTOC):	5.92			Well Hea	d Condition:	l l						
SWL (mB	TOC):	1.9	. (Water Co	olumn (m): 4.01								
PHASE S	EPARATI	ED HYDR	OCARBO	NS (PSH)						-				
Depth to I	PSH (mBT	TOC):		\sim	PSH Visu	ually Confirmed (Bail	er):							
PSH Thic	kness (mr	n):	\sim											
Field Filte	ered													
Yes (0.45	μm)	Ø					No	(Request	lab 0.45 µm	filter the s	sample)			
PURGE A	AND SAM	PLE						× 1			<u> </u>			
Sampling	Method			er	ØPeristalt	ic 🗆	ISubmersi	ble DOther:						
Depth of I	Pump Inle	t (mBTOC	<u>.</u>	55			Fill Timer	•	\sim					
Pump Pre		aulator (ns	<u>/·</u> si)· /				Discharg	e Timer:						
Weather	Condition		hacture				Cyclo:							
	time	s. () Aé					Dump off	time: 10.39						
		<u> </u>					Fumpon							
			IERS				Burn To	at Data and Time:						
PIODE Ma					Τ		Bump re							
Time	Volume	SWL (mbtoc)	Temp	EC (uS/cm)	Redox (m)()	DO (mg/l)	pH (units)	Comments (colour	r, turbidity, o	dour, shee	n etc.)			
6.110			19 60	(µ3/cm)		(iiig/L)	(units)	Maspale com	Ali		child.			
9:49	0.5	2.00	11.78	(264	256	0.00	5.65		ia-high no) 000~, 3	SVGUIT			
1.55	1.0	6.00	(1,00	1907	/9.0	0.00	4.()			6	theen			
1.51	$\left(\cdot \right)$	2.36	-	1274	-10-5	0.00	T' 12		1					
10.01	2.0	2.44	20.10	1217	-/1.9	0.00	4.91	V	4	V .	J_			
			<u> </u>											
			<u> </u>	_										
			<u> </u>											
			-	-										
Stab	ilisation ra	ange:		-	+									
3 cons	secutive re	adings	±0.2°C	±3%	±20mV	±10%	±0.2							
				<u> </u>	1									
		I S/OBSEI	VALIDIN	з. С	001		1							
			1	UN-C	201 /G	2TI ta	hen							
			/		ι									
SIGNATU	IRF: //	<i>q</i> ,	_///											
	- 47	SN-	TV []											

Appendix H – Chain of Custody and Sample Receipt Documentation

Sheet 1 of 3					S	ample	e Matr	ix										Ana	lysis										Comments
Site: 1 H Hospital Rd, C	Concord		Pro E25	ject No: 996												(ENM) Suite	ete	oosite aterials)				r (CrS)		(8	ivity)				HM ≜ Arsenic Cadmium Chromium Copper Lead
Laboratory:	SGS Austra Unit 16, 33 ALEXANDR P: 02 8594	alia Maddox Stro RIA NSW 201 0400 F: 02 8	eet, 5 594 0499				ld filtered		H/BTEX/PAHs CB/Asbestos	H/BTEX/PAHs	H/BTEX				Quantification	Natural Material	- Stockpile discr (/PAHs)	- Stockpile com		oxide		Reducible Sulfu		cation exchange	lectrical conduct	Chloride		⁸ / PAH	Mercury Nickel Zinc HM B Arsenic Codmium
Sample	Laboratory	Container	Sampl	ing		R.	um fie	ШШ	/TRI	/TRI	TR	×		stos	istos (vated	Suite /BTE/	Suite /pH	s	oH per	CAS	mium	(0	CEC (EC (e	ate / (WHO	Chromium Lead
ID	ID	Туре	Date	Time	SOIL	WATE	0.45	OTH	HM ^A	MH	MH	BTE)	Н	Asbe	Asbe	Excav	ENM (TRH	ENM (HM ^A	Dioxir	pH / p	sPO(Chro	PFAS	/Hd	/ Hd	Sulph	Lead	TCLF	Mercury Nickel
BH1M_0.5-0.6		J; ZLB	24/05/2023	PM	Х		2.4		Х						Х														Dewatering Suite
BH1M_1.5-1.6		J; ZLB	24/05/2023	PM	Х																								TDS / TDU Hardness
BH1M_2.0-2.1	2	J; ZLB	24/05/2023	PM	Х				Х	Х			Х						5	GS	EHS	Syd	ney	coo	2				Total Cyanide Metals (Al, As, Cd, Cr, Cu, Pb, Hg, Ni, Zn)
BH2_0.1-0.2	3	J; ZLB	24/05/2023	PM	Х				Х						Х					SE	24	81	98	8					TRH (F1, F2, F3, F4) BTEX
BH2_0.5-0.6		J; ZLB	24/05/2023	PM	Х																								PAH Total Phenol
BH2_1.5-1.6	4	J; ZLB	24/05/2023	PM	Х				Х	Х			Х						1										LABORATORY TURNAROUND
BH3_0.20-0.30	5	J; ZLB	23/05/2023	PM	Х				Х						Х											1			X Standard
BH3_0.80-0.90		J; ZLB	23/05/2023	PM	Х									2															24 Hours
BH3_0.80-0.90		J; ZLB	23/05/2023	PM	Х																								48 Hours
BH4_0.5-0.6	6	J; ZLB	24/05/2023	PM	Х				Х						Х				Х										72 Hours
BH4_1.5-1.6		J; ZLB	24/05/2023	PM	Х																								Other
BH4_2.0-2.1	7	J; ZLB	24/05/2023	PM	X				Х	Х			Х																
Container Type: J = solvent washed, acid m S = solvent washed, acid m	insed, Tefton sea insed glass botll	aled glass jar e				Inves	tigator:	l attes	t that th	iese sa	Imples	were o	ollecter	d in acc es.	ordan	ce with	n standa	ard El fi	eld sar	npling			Repo	rt with	El Was	ste Clas	sificatio	on Tabl	в. Х
P = natural HDPE plastic b VC = glass vial, Tefton Se	pottle					Sampl Print	er's Nar	ne (EI):	Andre	w S.			Receiv Print	ved by (SGS):			_			Samp	ler's C	ommei	nts:					
ZLB = Zip-Lock Bag	BB = Bu	ulk Bag	uito 6 01 55 M	lillor Stro	at	Sian	ature						14 Signa	(BJ	42	M	7												
		50	PYRMONT N	SW 2009	σι,	Dete		4.	Schi	A			Dete	illine in the second se	-	-													
oigust	ralia	la	Ph: 9516	0722 ia.com.a		Date	ODT		25/05	/2023			Date	23.	5.	23	2	2.9	5-										
Contamination Remedia	tion Geotechnical	iu iu	COC June 2021 FOR	M v.5 - SGS	-	Please	e-mail	AN I labora	: tory res	ults to:	lab@	eiau	stralia	a.com	.au														
L					1																								

Sheet 2 of 3						S	ample	e Mati	rix										Anal	ysis										Comments
Site: 1 H Hospital Rd, C	oncord		E	Proje	ct No: 96												(ENM) Suite	ete	posite aterials)				ır (CrS)		(e	ivity)				HM Å Arsenic Cadmium Chromium Copper Lead
Laboratory:	SGS Austra Unit 16, 33 ALEXANDR P: 02 8594	lia Maddox Stre IA NSW 201 0400 F: 02 8	eet, 5 594 0499					id filtered		H/BTEX/PAHs CB/Asbestos	H/BTEX/PAHs	H/BTEX				Quantification	Natural Material	- Stockpile discr VPAHs)	- Stockpile com/ / EC / Foreign M		oxide		Reducible Sulfu		cation exchange	lectrical conduct	Chloride		⁸ / PAH	Mercury Nickel Zinc HM & Arsenic Cadmium
Sample	Laboratory	Container	Sa	ampling)		щ	hm fie	ĒR	A /TRI	A TRI	A TRI	×		estos	estos (vated	Suite (/BTE)	Suite /pH	SU	pH pe	CAS	mium	s	CEC	EC (e	hate /		P HM	Chromium Lead
ID	ID	Туре	Date	•	Time	SOI	WAT	0.45	OTH	HM	MH	MH	BTE	Hđ	Asb	Asb	Exca	ENM (TRF	ENM (HM	Dioxi	/Hq	sPO	Chrc	PFA	/ Hd	/ Hd	Sulpt	Lead	TCL	Mercury Nickel
BH5_0.20-0.30	8	J; ZLB	23/05/20	023		Х																						Х		Dewatering Suite pH & EC
BH5_0.60-0.70	9	J; ZLB	23/05/20	023		Х				X						Х												Х		TDS / TDU Hardness Total Cvanide
BH5_1.30-1.40	10	J; ZLB	23/05/20	023		Х				Х	Х			Х																Metals (Al, As, Cd, Cr, Cu, Pb, Hg, Ni, Zn)
BH6_0.10-0.20	(1	J; ZLB	23/05/20	023		Х				Х						Х								Х						TRH (F1, F2, F3, F4) BTEX
BH6_0.50-0.60		J; ZLB	23/05/20	023		Х																								Total Phenol
BH6_0.60-0.70	12	J; ZLB	23/05/20	023		Х														Х										LABORATORY TURNAROUND
BH6_0.90-1.00		J; ZLB	23/05/20	023		Х																								X Standard
BH7_0.5-0.6	13	J; ZLB	23/05/20	023		Х				Х						Х														24 Hours
BH7_1.5-1.6	19	J; ZLB	23/05/20	023		Х				Х	Х			Х																48 Hours
BH8_0.20-0.30	15	J; ZLB	23/05/20	023		Х				Х						Х								Х						72 Hours
BH8_0.50-0.60	16	J; ZLB	23/05/20	023		Х														Х										Other
BH8_0.90-1.00	17	J; ZLB	23/05/20	023		Х				Х	Х			Х																
Container Type: J = solvent washed, acid r	insed, Tefton se	aled glass jar					Inve	stigato	r: I atte	st that the	ese sar	nples v	were co pro	llected	in acco s.	ordance	e with	standar	d El fie	ld sam	pling			Rep	ort with	n El Wa	ste Cla	assifica	tion Ta	ble . X
P = natural HDPE plastic l VC = glass vial. Tefton Se	pottle						Sampl	er's Na	me (EI):	Andrew	0			Receiv	ed by (SGS):						Samp	ler's Co	ommer	nts:					
ZLB = Zip-Lock Bag	BB = E	ulk Bag					Princ			Andrew	5.			M	1300	sa	ICE	2												
12		SI	uite 6.01, 5 PYRMON	55 Mill	er Streel V 2009	t,	Signa	ature	4	1.Sch				Signa	7 S	-	5		- 7		_									
eiaustra	lia	la	eiaus@eiaus	stralia	.com.au		IMD	OPT			2023			Duit	0	1	0	\$	V.	$\left(\right)$										
			COC June 20	21 FORM v	.5 - SGS		Please	e-mai	labora	itory resu	ilts to: I	ab@	eiaus	tralia.	com.	au														

Sheet 3 of 3					S	Sampl	e Matr	ix										Anal	/sis										Comments
Site: 1 H Hospital Rd, C	Concord		Proje E259	ect No: 196												(ENM) Suite	ete	osite aterials)				(CrS)			vity)				HM A Arsenic Cadmium Chromium Copper
Laboratory:	SGS Austra Unit 16, 33 ALEXANDR P: 02 8594	alia Maddox Stre RA NSW 201 0400 F: 02 85	eet, 5 594 0499				d filtered		4/BTEX/PAHs CB/Asbestos	4/BTEX/PAHs	4/BTEX				Quantification	Natural Material	- Stockpile discre /PAHs)	- Stockpile comp EC / Foreign Ma	Suite	oxide		Reducible Sulfur		cation exchange	ectrical conducti	Chloride		I PAH	Mercury Nickel Zinc HM ^B Arsenic
Sample	Laboratory	Container	Samplin	g	1	œ	m fiel	Ω.	UTRH OP/P	TRF	TRF			stos	stos C	ated	suite . BTEX	http://bh/	tering	H per	AS	min		EC (C (el	tte / C		WH	Cadmium
ID	ID	Туре	Date	Time	SOIL	WATE	0.45 µ	OTHE	HM A OCP/	HM ^A	HM A	BTEX	VOCs	Asbes	Asbes	Excav	ENM S	ENM S	Dewa	pH / pł	sPOC	Chron	PFAS	pH/Q	pH/E	Sulpha	Lead	TCLP	Lead Mercury Nickel
BH9_0.10-0.20	18	J; ZLB	23/05/2023		Х				Х						Х								X						Dewatering Suite
BH9_0.60-0.70		J; ZLB	23/05/2023		Х																								TDS / TDU Hardness
BH10_0.20-0.30	19	J; ZLB	23/05/2023		Х				Х						Х								Х						Total Cyanide Metals (Al, As, Cd, Cr, Cu, Pb, He, Ni, Zp)
BH10_0.70-0.80		J; ZLB	23/05/2023		Х																								TRH (F1, F2, F3, F4) BTEX
BH11_0.50-0.95	2	J; ZLB	23/05/2023		Х				Х						Х														PAH Total Phenol
BH11_0.50-0.60	20	J; ZLB	23/05/2023		Х																								
€BH12M_0.50-0.95		J; ZLB	23/05/2023		Х				Х						Х														
BH12M_1.50-1.95		J; ZLB	23/05/2023		Х																								
QD1	21	J; ZLB	23/05/2023		Х						Х																		
TB1	22	J	23/05/2023		X																								
TS1	23	J	23/05/2023		Х																								Other
QRI	29	J	23/05/2023			Х					Х																		
Container Type: J = solvent washed, acid S = solvent washed, acid	rinsed, Tefton se	aled glass jar				Inve	stigator	: I attes	t that the	se san	nples w	ere co proc	llected	in acc s.	ordance	e with	standa	rd El fie	ld sam	pling			Repo	rt with	El Was	te Clas	sificatio	on Tabi	e X
P = natural HDPE plastic VC = glass vial. Tefton Se	bottle eptum					Samp	ler's Nar	ne (EI):					Receiv	ved by (SGS):						Sampl	ler's C	omme	nts:					
ZLB = Zip-Lock Bag	BB = E	Bulk Bag				Print			Andrew	S.			M	300	Sel	U)												
120		Si	uite 6.01, 55 Mil PYRMONT NS	ller Stree W 2009	et,	Sign	ature	4	.Schin	¢			Sign	ature	_														
eiaustral	a	1.	Ph: 9516 0	722		Date			25/05/2	023			Date	25	5	2	3	V.	43	-									
Composition (Becatterior - Boate		Ia	abweiaustralla	a.com.a	u	IMP	ORT	ANT																					

RE: [EXTERNAL] RE: E25996 COC - Concord

Sergio Raposeira - ElAustralia <sergio.raposeira@eiaustralia.com.au>

Mon 29/05/2023 12:16 PM

To: AU.SampleReceipt.Sydney, AU (Sydney) <AU.SampleReceipt.Sydney@sgs.com>

Cc: Andrew Schmidt - ElAustralia <andrew.schmidt@eiaustralia.com.au>

*** WARNING: this message is from an EXTERNAL SENDER. Please be cautious, particularly with links and attachments. ***

Hi Michael,

Please refer to my comments below in blue

Please see photo attached and confirm which BH3 bag to reassign to BH3_0.20-0.30. – Any sample bag can be used for BH3_0.20-0.30 (same location and same sample)

BH11_1.2-1.3 and BH11_1.7-1.8 (originally BH4, same depths) remain unlisted and not received. – Noted. Please only test BH11_0.5-0.6 (former BH4_0.5-0.6) for HM /TRH/BTEX/PAHs_OCP/OP/PCB/Asbestos (quantification)

BH12_0.5-0.95 and BH12_1.50-1.95 remain listed not received. – Noted. Please only test BH12M_0.3-0.4 (HM A /TRH/BTEX/PAHs OCP/OP/PCB/Asbestos (quantification)

Best Regards

Sergio Raposeira BSc (Env), MSc Environmental Engineer

T 02 9516 0722 M 04 2032 1984 E sergio.raposeira@eiaustralia.com.au

Suite 6.01, 55 Miller Street Pyrmont, NSW 2009

#25

www.eiaustralia.com.au Environmental | Geotechnical | Structural | Civil | Hazardous Materials

El Australia is a proud member of the Australian Contaminated Land Consultants Association and the Australian Geomechanics Society.

CONFIDENTIALITY - This email contains confidential and privileged information. If you are not the intended recipient, our apologies - please destroy it and notify us so that we can appropriately re-address it. Disclosure, copying, distribution or use of the contents of this email is strictly prohibited.

A Please consider the environment before printing this email.

From: AU.SampleReceipt.Sydney, AU (Sydney) [mailto:AU.SampleReceipt.Sydney@sgs.com]
Sent: Monday, 29 May 2023 11:59 AM
To: Sergio Raposeira - EIAustralia
Cc: Andrew Schmidt - EIAustralia; Tahlia Suares - EIAustralia; Mary Nacua - EIAustralia
Subject: Re: [EXTERNAL] RE: E25996 COC - Concord

SAMPLE RECEIPT ADVICE

- CLIENT DETAIL	S	LABORATORY DETA	AILS	
Contact Client Address	Andrew Schmidt EI AUSTRALIA SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Manager Laboratory Address	Huong Crawford SGS Alexandria Environmental Unit 16, 33 Maddox St Alexandria NSW 2015	
Telephone	61 2 95160722	Telephone	+61 2 8594 0400	
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499	
Email	andrew.schmidt@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com	
Project	E25996 1H Hospital Rd Concord	Samples Received	Thu 25/5/2023	
Order Number	E25996	Report Due	Thu 1/6/2023	
Samples	25	SGS Reference	SE248198	

- SUBMISSION DETAILS

This is to confirm that 25 samples were received on Thursday 25/5/2023. Results are expected to be ready by COB Thursday 1/6/2023. Please quote SGS reference SE248198 when making enquiries. Refer below for details relating to sample integrity upon receipt.

Sample counts by matrix Date documentation received Samples received without headspace Sample container provider Samples received in correct containers Sample cooling method Complete documentation received 22 Soil, 1 Water 25/5/2023 Yes SGS Yes Ice Bricks Yes Type of documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested Sufficient sample for analysis Samples clearly labelled COC Yes 13.5°C Standard Yes Yes

Unless otherwise instructed, water and bulk samples will be held for one month from date of report, and soil samples will be held for two months.

COMMENTS -

Dioxins reported in SE248198A.

13 Soils and 1 Water samples have been placed on hold as no tests have been assigned for it . These samples will not be processed. PFAS subcontracted to SGS Melbourne, 10/585 Blackburn Road, Notting Hill, VIC, NATA Accreditation Numbe. 2562/14420.

This its General Conditions of Service document is issued by the Company under accessible at Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined www.sgs.com/en/Terms-and-Conditions.aspx. therein.

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd Alexandria NSW 2015 Alexandria NSW 2015 Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

www.sgs.com.au

CLIENT DETAILS ____

Client EI AUSTRALIA

Project E25996 1H Hospital Rd Concord

SUMMARY	(OF ANALYSIS						1		
No.	Sample ID	OC Pesticides in Soil	OP Pesticides in Soil	PAH (Polynuclear Aromatic Hydrocarbons) in Soil	PCBs in Soil	pH in soil (1:5)	TRH (Total Recoverable Hydrocarbons) in Soil	VOC's in Soil	Volatile Petroleum Hydrocarbons in Soil
001	BH1M_0.5-0.6	30	14	26	11	-	10	11	7
002	BH1M_2.0-2.1	30	14	26	11	1	10	11	7
003	BH2_0.1-0.2	30	14	26	11	-	10	11	7
004	BH2_1.5-1.6	30	14	26	11	1	10	11	7
005	BH3_0.20-0.30	30	14	26	11	-	10	11	7
006	BH4_0.5-0.6	30	14	26	11	-	10	11	7
007	BH4 2.0-2.1	30	14	26	11	1	10	11	7
009	BH5_0.60-0.70	30	14	26	11	-	10	11	7
010	BH5_1.30-1.40	30	14	26	11	1	10	11	7
011	BH6_0.10-0.20	30	14	26	11	-	10	11	7
013	BH7_0.5-0.6	30	14	26	11	-	10	11	7
014	BH7_1.5-1.6	30	14	26	11	1	10	11	7
015	BH8_0.20-0.30	30	14	26	11	-	10	11	7
017	BH8_0.90-1.00	30	14	26	11	1	10	11	7
018	BH9_0.10-0.20	30	14	26	11	-	10	11	7
019	BH10_0.20-0.30	30	14	26	11	-	10	11	7
020	BH11_0.50-0.60	30	14	26	11	-	10	11	7
021	QD1	-	-	-	-	-	10	11	7
022	ТВ1	-	-	-	-	-	-	11	-
023	TS1	-	-	-	-	-	-	11	-

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package.

Please indicate as soon as possible should your request differ from these details . Testing as per this table shall commence immediately unless the client intervenes with a correction .

SAMPLE RECEIPT ADVICE

SE248198

Client EI AUSTRALIA

Project E25996 1H Hospital Rd Concord

_	SUMMARY	OF ANALYSIS								
	No.	Sample ID	OC Pesticides in Soil	OP Pesticides in Soil	PAH (Polynuclear Aromatic Hydrocarbons) in Soil	PCBs in Soil	TRH (Total Recoverable Hydrocarbons) in Soil	VOC's in Soil	Volatile Petroleum Hydrocarbons in Soil	
	025	BH12M_0.3-0.4	30	14	26	11	10	11	7	

___ CONTINUED OVERLEAF

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details .

Testing as per this table shall commence immediately unless the client intervenes with a correction .

SAMPLE RECEIPT ADVICE

SE248198

CLIENT DETAILS -

Client EI AUSTRALIA

Project E25996 1H Hospital Rd Concord

SUMMARY	OF ANALYSIS						
No.	Sample ID	Fibre Identification in soil	Gravimetric Determination of Asbestos in Soil	Mercury in Soil	Moisture Content	Per- and Polyfluoroalkyl Substances (PFAS) in	Total Recoverable Elements in Soil/Waste
001	BH1M_0.5-0.6	2	9	1	1	-	7
002	BH1M_2.0-2.1	-	-	1	1	-	7
003	BH2_0.1-0.2	2	9	1	1	-	7
004	BH2_1.5-1.6	-	-	1	1	-	7
005	BH3_0.20-0.30	2	9	1	1	-	7
006	BH4_0.5-0.6	2	9	1	1	-	7
007	BH4 2.0-2.1	-	-	1	1	-	7
008	BH5_0.20-0.30	-	-	-	1	-	1
009	BH5_0.60-0.70	2	9	1	1	-	7
010	BH5_1.30-1.40	-	-	1	1	-	7
011	BH6_0.10-0.20	2	9	1	1	59	7
013	BH7_0.5-0.6	2	9	1	1	-	7
014	BH7_1.5-1.6	-	-	1	1	-	7
015	BH8_0.20-0.30	2	9	1	1	59	7
017	BH8_0.90-1.00	-	-	1	1	-	7
018	BH9_0.10-0.20	2	9	1	1	59	7
019	BH10_0.20-0.30	2	9	1	1	59	7
020	BH11_0.50-0.60	2	9	1	1	-	7
021	QD1	-	-	1	1	-	7
022	TB1	-	-	-	1	-	-

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details .

Testing as per this table shall commence immediately unless the client intervenes with a correction .

_ CONTINUED OVERLEAF

No.

025

Sample ID

BH12M_0.3-0.4

SAMPLE RECEIPT ADVICE

CLIENT DETAILS -Client EI AUSTRALIA E25996 1H Hospital Rd Concord Project - SUMMARY OF ANALYSIS Fibre Identification in soil Total Recoverable Elements in Soil/Waste Moisture Content Mercury in Soil

1

7

1

2

_ CONTINUED OVERLEAF

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details

Testing as per this table shall commence immediately unless the client intervenes with a correction .

SAMPLE RECEIPT ADVICE

CLIENT DETAILS

Client EI AUSTRALIA

Project E25996 1H Hospital Rd Concord

- SUMMARY	OF ANALYSIS					
No.	Sample ID	Mercury (dissolved) in Water	Trace Metals (Dissolved) in Water by ICPMS	TRH (Total Recoverable Hydrocarbons) in Water	VOCs in Water	Volatile Petroleum Hydrocarbons in Water
024	QR1	1	7	9	11	7

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details .

Testing as per this table shall commence immediately unless the client intervenes with a correction .

coc: 2/6/23 1555

Sheet of [5	Sampl	e Mat	rix		• — —							- 4	Analys	sis									Comments
Site: Concord Laboratory:	Hospital Envirolabs 12 Ashleys CHATSWO P: 02 9910	, Conco Services Street, OD NSW 206 6200	ad E2	oject No: 5996			filtered		3TEX/PAHs B/Asbestos	3TEX/PAHs	3TEX				antification	tural Material (ENM) Suite	uite	lde		iducible Suitur (CrS)		ion exchange)	rical conductivity)	oride			АН	HM Å Arsenic Cadmium Chromium Copper Lead Mercury Nickel Zinc HM P Arsenic
Sample ID	Laboratory ID	Container Type	Sampl Date	ing Time	SOIL.	NATER	0.45 µm field	OTHER	HM * /TRH/	нм^ лт <i></i> кнл	HM ^A /TRH/I	втех	/ocs	Asbestos	Asbestos Qu	xcavated Na	Jewatering S	H / pH perox	POCAS	chromium Re	FAS	H / CEC (ca	H / EC (elec	Iphate / Chi			CLP HM ^B / I	Cadmium Chromium Lead Mercury
GW-QTI	1	S, P, ZXUC	(16/2.2	000/0.00		X	×				X		<u> </u>	4	4	ш		đ	<u></u>		a	a i	ā	้รา			Ĕ	NICKEI
					· · ·																E J Date Time Recei Temp Cooling		E Chat Yed: Yed: Yed: Yed: Cope Cluin		20 Sen 2 Ashi 9910 762 72 75	<u>vices</u> ay St 2007 5200		Dewatering Sulte pH & EC TOS / TOU Hardness Total Cyanide Metals (AI, As, Cd, Cr, Cu, Pb, Hg, Ni, Zn) TRH (F1, F2, F3, F4) BTEX PAH LABORATORY TURNAROUND Carton Standard 24 Hours 48 Hours 72 Hours
	!														_													Other
Container Type: J = solvent washed, acid S = solvent washed, acid P = nalural HDPE plastic VC = glass vial, Tetton St ZLB = Zip-Lock Bag	rinsed, Teflon sea rinsed glass boll bolle eptum	aled glass Jar e Sui F	te 6.01, 55 M YRMONT NS Ph: 9516 (@@eiaustrali	iller Streei SW 2009 0722 a.com.au	t,	In Sample Print Signal Date	vestiga er's Nam hure 2/0 DRT/	ne (EI): Ne (EI): Ne Sc(6/2: ANT:		at thes	ie samp s nidf	oles wa amplin C	ere colla g proce Print Signal Date	ected in edures. ed by (E fure 2	n accor Invirolat PR 76/2	-3	with st	andard	f El fiel	d	Report with El Waste Classification Table .							

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	El Australia
Attention	Andrew Schmidt

Sample Login Details	
Your reference	E25996, Concord Hospital, Concord
Envirolab Reference	324762
Date Sample Received	02/06/2023
Date Instructions Received	02/06/2023
Date Results Expected to be Reported	09/06/2023

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	1 Water
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	12
Cooling Method	Ice Pack
Sampling Date Provided	YES

Comments	
Nil	

Please direct any queries to:

Aileen Hie	Jacinta Hurst								
Phone: 02 9910 6200	Phone: 02 9910 6200								
Fax: 02 9910 6201	Fax: 02 9910 6201								
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au								

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

The ' \checkmark ' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

Sheet of						Samp	le Mat	rix										Ana	alysis										Comments
Site: Concord f	lospital	, Conco	Pro EZ:	oject No: 5996	_				<u>8</u> 8	S						rial (ENM) Suite	screte	omposite n Materials)				ulfur (CrS)		(ebu	uctivity)				HM A Arsenic Cadmium Chromium Copper Lead Mercury
	Unit 16, 33 ALEXAND P: 02 8594	Maddox Stre RIA NSW 201 0400 F: 02 8	eet, 5 594 0499				d filtered		HBTEX/PAH CB/Asbesto:	I/BTEX/PAH	H/BTEX				tuantification	Vatural Mate	. Stockpile di /PAHs)	Stockpile co EC / Foreign	Suite	oxide		Reducible St		cation excha	ectrical cond	hloride		/ PAH	Nickel Zinc HM® Arsenic
Sample	Laboratory	Container	Sampl	ling]	с.	m fiel	а.	/TRH	TRH	TRF			tos	tos Q	ated h	suite -	hH /	ering	H perc	AS	min F		EC (o	C (ele	te / C		HMB	Cadmium Chromium
ID	ID	Туре	Date	Time	SOIL	WATE	0.45 µ	OTHE	HM ^A OCP/	HM ^A	HMA	BTEX	VOCs	Asbes	Asbes	Excave	TRH/B	HMA	Dewat	H / bł	SPOC	Chrom	PFAS	pH/C	DH / E	Sulpha	ead	TCLP	Lead Mercury Nickel
BHIM	1	S, 2×P, 2×VC, PF	1/6/23	omp		\times	\prec			X																57	_		Dewatering Suite
BH9M	2		1			2	1			1																			TDS / TDU Hardness
BHIZM	3	V								1																			Total Cyanide Metals (Al, As, Cd, Cr, Cu, Pb, Hg, Ni, Zo)
GW-QD1	4	S, P, 2xUC	\downarrow	V			4				×															1			TRH (F1, F2, F3, F4) BTEX
GW-ORI	5	SAVC	1/6/23	confor							×									_					_				PAH Total Phenol
GW-QLBI		1	T	T.															SG	S Eł	EHS Sydney COC					LABORATORY			
GW -OTBI	6	VC	Lab Pre	oured								X							S	E2	248	85	14						Standard
aw-arsi	7	+	↓ I	Ţ		Y				-		×												24 Hours 48 Hours					
				£																									Other
Container Type: J = solvent washed, acid n S = solvent washed, acid n	insed, Tefton se	ealed glass jar	054			'	nvestig	ator: I a	attest th	at the	se sam	ples w samplii	ere coll ng proc	lected i edures	n acco	rdance	e with s	tandard	d El fiel	ld			Repo	ort with I	El Was	te Clas	sificatio	n Table	e .
P = natural HDPE plastic t VC = glass vial, Tefton Se	pottle	Pr	-= PFAS			Samp	ler's Na	me (El):		. 1		, ,	Receiv	ved by (SGS):						Samp	ler's Co	ommer	nts:					
ZLB = Zip-Lock Bag	BB = B	lulk Bag	ite 6 01 55 M	Ailler Stree	et	Sian	An	de	12	Sch.	mil	ł	Sign	atura r	0	-	2				Pla	re	find	G	ITI-	to	En	virol	ab
		F	PYRMONT N	SW 2009		Oate	1	45	l	-2	1	r	Date	X	P	4	JU	san	ra	1									
eiaust	ralia	la	Ph: 9516 b@eiaustral	0722 lia.com.a	u	IMP		161	23				Date	011	0'6	2	3 6	5 0	1.7	~	Plea	use	cc	: 50	ergi	0. C	cpo:	sein	5
Contamination I Remodia	tion I Geotechnical		COC June 2021 FOR	RM v.5 - SGS		Pleas	e e-mail	labora	tory res	ults to:	lab@	eiau	stralia	a.com	.au										0				

SAMPLE RECEIPT ADVICE

CLIENT DETAIL	S	LABORATORY DETA	LABORATORY DETAILS								
Contact	Andrew Schmidt	Manager	Huong Crawford								
Client	EIAUSTRALIA	Laboratory	SGS Alexandria Environmental								
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015								
Telephone Facsimile	61 2 95160722 (Not specified)	Telephone Facsimile	+61 2 8594 0400 +61 2 8594 0499								
Email	andrew.schmidt@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com								
Project	E25996 Concord Hospital, Concord	Samples Received	Thu 1/6/2023								
Order Number	E25996	Report Due	Thu 8/6/2023								
Samples	7	SGS Reference	SE248514								

SUBMISSION DETAILS

This is to confirm that 7 samples were received on Thursday 1/6/2023. Results are expected to be ready by COB Thursday 8/6/2023. Please quote SGS reference SE248514 when making enquiries. Refer below for details relating to sample integrity upon receipt.

- Sample counts by matrix Date documentation received Samples received without headspace Sample container provider Samples received in correct containers Sample cooling method Complete documentation received
- 7 Water 1/6/2023 Yes SGS Yes Ice Bricks Yes

Type of documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested Sufficient sample for analysis Samples clearly labelled COC Yes 10.4°C Standard Yes Yes

Unless otherwise instructed, water and bulk samples will be held for one month from date of report, and soil samples will be held for two months.

COMMENTS -

1 water sample has been placed on hold as no tests have been assigned for it. This sample will not be processed.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015

015 Australia 015 Australia

stralia t +61 2 8594 0400 stralia f +61 2 8594 0499

www.sgs.com.au

SAMPLE RECEIPT ADVICE

CLIENT DETAILS

Client EI AUSTRALIA

Project E25996 Concord Hospital, Concord

- SUMN	IARY OF ANALYSIS							
N	o. Sample ID	Mercury (dissolved) in Water	PAH (Polynuclear Aromatic Hydrocarbons) in Water	Trace Metals (Dissolved) in Water by ICPMS	TRH (Total Recoverable Hydrocarbons) in Water	VOCs in Water	Volatile Petroleum Hydrocarbons in Water	
001	BH1M	1	22	7	9	11	7	
002	вн9м	1	22	7	9	11	7	
003	BH12M	1	22	7	9	11	7	
004	GW_QD1	1	-	7	9	11	7	
005	GW_QR1	1	-	7	9	11	7	
006	GW_QTB1	-	-	-	-	11	-	
007	GW_QTS1	-	-	-	-	11	-	

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details . Testing as per this table shall commence immediately unless the client intervenes with a correction .

Appendix I – Laboratory Analytical Reports

ANALYTICAL REPORT

- CLIENT DETAILS		LABORATORY DE	LABORATORY DETAILS							
Contact	Andrew Schmidt	Manager	Huong Crawford							
Client	EI AUSTRALIA	Laboratory	SGS Alexandria Environmental							
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015							
Telephone	61 2 95160722	Telephone	+61 2 8594 0400							
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499							
Email	andrew.schmidt@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com							
Project	E25996 1H Hospital Rd Concord	SGS Reference	SE248198 R0							
Order Number	E25996	Date Received	25/5/2023							
Samples	25	Date Reported	5/6/2023							

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

No respirable fibres detected in all soil samples using trace analysis technique.

Asbestos analysed by Approved Identifier Yusuf Kuthpudin

PFAS subcontracted to SGS Melbourne, 10/585 Blackburn Road, Notting Hill, VIC, NATA Accreditation Numbe. 2562/14420.Report No. ME334472.

SIGNATORIES

Bennet LO Senior Chemist

Huong CRAWFORD

Production Manager

Kamrul AHSAN Senior Chemist

kinty (

Ly Kim HA Organic Section Head

Shane MCDERMOTT

Inorganic/Metals Chemist

Yusuf KUTHPUDIN Asbestos Analyst

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia t +61 2 8594 0400 Australia f +61 2 8594 0499 www.sgs.com.au

SE248198 R0

VOC's in Soil [AN433] Tested: 30/5/2023

			BH1M_0.5-0.6	BH1M_2.0-2.1	BH2_0.1-0.2	BH2_1.5-1.6	BH3_0.20-0.30
			SOIL	SOIL	SOIL	SOIL	SOIL
			24/5/2023	24/5/2023	24/5/2023	24/5/2023	23/5/2023
PARAMETER	UOM	LOR	SE248198.001	SE248198.002	SE248198.003	SE248198.004	SE248198.005
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Xylenes*	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX*	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Naphthalene (VOC)*	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1

			BH4_0.5-0.6	BH4_2.0-2.1	BH5_0.60-0.70	BH5_1.30-1.40	BH6_0.10-0.20
			SOIL	SOIL	SOIL	SOIL	SOIL
			24/5/2023	24/5/2023			
PARAMETER	UOM	LOR	SE248198.006	SE248198.007	SE248198.009	SE248198.010	SE248198.011
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Xylenes*	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX*	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Naphthalene (VOC)*	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1

			BH7_0.5-0.6	BH7_1.5-1.6	BH8_0.20-0.30	BH8_0.90-1.00	BH9_0.10-0.20
			SOIL	SOIL	SOIL	SOIL	SOIL
			23/5/2023	23/5/2023	23/5/2023	23/5/2023	23/5/2023
PARAMETER	UOM	LOR	SE248198.013	SE248198.014	SE248198.015	SE248198.017	SE248198.018
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Xylenes*	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX*	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Naphthalene (VOC)*	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1

			BH10_0.20-0.30	BH11_0.50-0.60	QD1	TB1	TS1
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
PARAMETER	ПОМ	LOR	SE2/8108 010	SE2/8198 020	SE2/8108 021	SE2/8108 022	SE2/8198 023
	001	LOK	32240130.013	31240130.020	31240130.021	36240130.022	32240130.023
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	[91%]
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	[93%]
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	[93%]
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	[93%]
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	[93%]
Total Xylenes*	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	-
Total BTEX*	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6	-
Naphthalene (VOC)*	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	-

VOC's in Soil [AN433] Tested: 30/5/2023 (continued)

			BH12M_0.3-0.4
			SOIL
			- 23/5/2023
PARAMETER	UOM	LOR	SE248198.025
Benzene	mg/kg	0.1	<0.1
Toluene	mg/kg	0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2
o-xylene	mg/kg	0.1	<0.1
Total Xylenes*	mg/kg	0.3	<0.3
Total BTEX*	mg/kg	0.6	<0.6
Naphthalene (VOC)*	mg/kg	0.1	<0.1

SE248198 R0

Volatile Petroleum Hydrocarbons in Soil [AN433] Tested: 30/5/2023

			BH1M_0.5-0.6	BH1M_2.0-2.1	BH2_0.1-0.2	BH2_1.5-1.6	BH3_0.20-0.30
			201	2011	2011	201	201
			- 5012	- 3012	-	- SOIL	-
			24/5/2023	24/5/2023	24/5/2023	24/5/2023	
PARAMETER	UOM	LOR	SE248198.001	SE248198.002	SE248198.003	SE248198.004	SE248198.005
TRH C6-C9	mg/kg	20	<20	<20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25	<25

			BH4 0.5-0.6	BH4 2.0-2.1	BH5 0.60-0.70	BH5 1.30-1.40	BH6 0.10-0.20	
			SOIL	SOIL	SOIL	SOIL	SOIL	
			24/5/2023	24/5/2023	23/5/2023	23/5/2023	23/5/2023	
PARAMETER	UOM	LOR	SE248198.006	SE248198.007	SE248198.009	SE248198.010	SE248198.011	
TRH C6-C9	mg/kg	20	<20	<20	<20	<20	<20	
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
TRH C6-C10	ma/ka	25	<25	<25	<25	<25	<25	
111100-010	iiig/kg	2.5	-23	~25	-23	-23	-23	
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25	<25	

			BH7_0.5-0.6 BH7_1.5-1.6 BH8_0.20		BH8_0.20-0.30	BH8_0.90-1.00	BH9_0.10-0.20
			SOIL	SOIL	SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	SE248198.013	SE248198.014	SE248198.015	SE248198.017	SE248198.018
TRH C6-C9	mg/kg	20	<20	<20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25	<25

			BH10_0.20-0.30	BH11_0.50-0.60	QD1	BH12M_0.3-0.4
			SOIL	SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	SE248198.019	SE248198.020	SE248198.021	SE248198.025
TRH C6-C9	mg/kg	20	<20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25

TRH (Total Recoverable Hydrocarbons) in Soil [AN403] Tested: 30/5/2023

			BH1M_0.5-0.6	BH1M_2.0-2.1	BH2_0.1-0.2	BH2_1.5-1.6	BH3_0.20-0.30
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
PARAMETER	иом	LOR	24/5/2023 SE248198 001	24/5/2023 SE248198 002	24/5/2023 SE248198 003	24/5/2023 SE248198 004	23/5/2023 SE248198 005
TRH C10-C14	mg/kg	20	<20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	<45	<45	62	<45	79
TRH C29-C36	mg/kg	45	<45	<45	88	<45	64
TRH C37-C40	mg/kg	100	<100	<100	<100	<100	<100
TRH >C10-C16	mg/kg	25	<25	<25	<25	<25	<25
TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90	110	<90	120
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	130	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110	150	<110	140
TRH >C10-C40 Total (F bands)	mg/kg	210	<210	<210	230	<210	<210

			BH4_0.5-0.6	BH4_2.0-2.1	BH5_0.60-0.70	BH5_1.30-1.40	BH6_0.10-0.20
PARAMETER	UOM	LOR	SOIL - 24/5/2023 SE248198.006	SOIL - 24/5/2023 SE248198.007	SOIL - 23/5/2023 SE248198.009	SOIL - 23/5/2023 SE248198.010	SOIL - 23/5/2023 SE248198.011
TRH C10-C14	mg/kg	20	<20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	<45	<45	<45	<45	<45
TRH C29-C36	mg/kg	45	<45	<45	<45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100	<100	<100	<100
TRH >C10-C16	mg/kg	25	<25	<25	<25	<25	<25
TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90	<90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110	<110	<110	<110
TRH >C10-C40 Total (F bands)	mg/kg	210	<210	<210	<210	<210	<210

			BH7_0.5-0.6	BH7_1.5-1.6	BH8_0.20-0.30	BH8_0.90-1.00	BH9_0.10-0.20
			SOIL - 23/5/2023	SOIL - 23/5/2023	SOIL - 23/5/2023	SOIL - 23/5/2023	SOIL - 23/5/2023
PARAMETER	UOM	LOR	SE248198.013	SE248198.014	SE248198.015	SE248198.017	SE248198.018
TRH C10-C14	mg/kg	20	<20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	<45	<45	<45	<45	<45
TRH C29-C36	mg/kg	45	<45	<45	<45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100	<100	<100	<100
TRH >C10-C16	mg/kg	25	<25	<25	<25	<25	<25
TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90	<90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110	<110	<110	<110
TRH >C10-C40 Total (F bands)	mg/kg	210	<210	<210	<210	<210	<210

TRH (Total Recoverable Hydrocarbons) in Soil [AN403] Tested: 30/5/2023 (continued)

			BH10_0.20-0.30	BH11_0.50-0.60	QD1	BH12M_0.3-0.4
			SOIL	SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	SE248198.019	SE248198.020	SE248198.021	SE248198.025
TRH C10-C14	mg/kg	20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	92	<45	50	<45
TRH C29-C36	mg/kg	45	69	<45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100	<100	<100
TRH >C10-C16	mg/kg	25	<25	<25	<25	<25
TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	140	<90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	160	<110	<110	<110
TRH >C10-C40 Total (F bands)	mg/kg	210	<210	<210	<210	<210

PAH (Polynuclear Aromatic Hydrocarbons) in Soil [AN420] Tested: 30/5/2023

			BH1M_0.5-0.6	BH1M_2.0-2.1	BH2_0.1-0.2	BH2_1.5-1.6	BH3_0.20-0.30
			<u></u>	001	001	001	001
			SOIL	SOIL	SOIL	501L	501L
			24/5/2023	24/5/2023	24/5/2023	24/5/2023	23/5/2023
PARAMETER	UOM	LOR	SE248198.001	SE248198.002	SE248198.003	SE248198.004	SE248198.005
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1	0.5	<0.1	<0.1
Anthracene	mg/kg	0.1	<0.1	<0.1	0.2	<0.1	<0.1
Fluoranthene	mg/kg	0.1	<0.1	<0.1	0.6	<0.1	<0.1
Pyrene	mg/kg	0.1	<0.1	<0.1	0.7	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	0.3	<0.1	<0.1
Chrysene	mg/kg	0.1	<0.1	<0.1	0.3	<0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	0.3	<0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	0.1	<0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	0.3	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	0.1	<0.1	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	0.2	<0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0*< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td>0.3</td><td><0.2</td><td><0.2</td></lor=0*<>	TEQ (mg/kg)	0.2	<0.2	<0.2	0.3	<0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor*< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td><td>0.4</td><td><0.3</td><td><0.3</td></lor=lor*<>	TEQ (mg/kg)	0.3	<0.3	<0.3	0.4	<0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2*<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td>0.4</td><td><0.2</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2	0.4	<0.2	<0.2
Total PAH (18)	mg/kg	0.8	<0.8	<0.8	3.5	<0.8	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	0.8	<0.8	<0.8	3.5	<0.8	<0.8

			BH4_0.5-0.6	BH4_2.0-2.1	BH5_0.60-0.70	BH5_1.30-1.40	BH6_0.10-0.20
			SOIL	SOII	5011	SOII	SOIL
			-	-	-	-	-
			24/5/2023	24/5/2023			
PARAMETER	UOM	LOR	SE248198.006	SE248198.007	SE248198.009	SE248198.010	SE248198.011
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	0.2
Pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	0.2
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	0.1
Chrysene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	0.2
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	0.1
Carcinogenic PAHs, BaP TEQ <lor=0*< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=0*<>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor*< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td></lor=lor*<>	TEQ (mg/kg)	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2*<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td>0.2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2	0.2
Total PAH (18)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8	1.1
Total PAH (NEPM/WHO 16)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8	1.1

PAH (Polynuclear Aromatic Hydrocarbons) in Soil [AN420] Tested: 30/5/2023 (continued)

			BH7_0.5-0.6	BH7_1.5-1.6	BH8_0.20-0.30	BH8_0.90-1.00	BH9_0.10-0.20
			2011	2011	2011	2011	2011
			- 3012	- 3012	- 50IL	- SOIL	-
			23/5/2023	23/5/2023	23/5/2023	23/5/2023	23/5/2023
PARAMETER	UOM	LOR	SE248198.013	SE248198.014	SE248198.015	SE248198.017	SE248198.018
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	0.1
Pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0*< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=0*<>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor*< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td></lor=lor*<>	TEQ (mg/kg)	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2*<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PAH (18)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8	<0.8

			BH10_0.20-0.30	BH11_0.50-0.60	BH12M_0.3-0.4
			SOIL	SOIL	SOIL
			-	-	-
PARAMETER	UOM	LOR	SE248198.019	SE248198.020	SE248198.025
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	0.2	<0.1	0.1
Pyrene	mg/kg	0.1	0.2	<0.1	0.1
Benzo(a)anthracene	mg/kg	0.1	0.1	<0.1	<0.1
Chrysene	mg/kg	0.1	0.1	<0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	0.2	<0.1	0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	0.2	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	0.1	<0.1	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	0.2	<0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0*< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>0.3</td><td><0.2</td><td><0.2</td></lor=0*<>	TEQ (mg/kg)	0.2	0.3	<0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor*< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td>0.4</td><td><0.3</td><td><0.3</td></lor=lor*<>	TEQ (mg/kg)	0.3	0.4	<0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2*<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>0.3</td><td><0.2</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	0.3	<0.2	<0.2
Total PAH (18)	mg/kg	0.8	1.5	<0.8	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	0.8	1.5	<0.8	<0.8

SE248198 R0

OC Pesticides in Soil [AN420] Tested: 30/5/2023

			BH1M_0.5-0.6	BH1M_2.0-2.1	BH2_0.1-0.2	BH2_1.5-1.6	BH3_0.20-0.30
			SOIL	SOIL	SOIL	SOIL	SOIL
			24/5/2023	24/5/2023	24/5/2023	24/5/2023	
PARAMETER	UOM	LOR	SE248198.001	SE248198.002	SE248198.003	SE248198.004	SE248198.005
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Lindane (gamma BHC)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDE*	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Endrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o,p'-DDD*	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDT*	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin aldehyde	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin ketone	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Isodrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total CLP OC Pesticides	mg/kg	1	<1	<1	<1	<1	<1
Total OC VIC EPA	mg/kg	1	<1	<1	<1	<1	<1

OC Pesticides in Soil [AN420] Tested: 30/5/2023 (continued)

			BH4_0.5-0.6	BH4_2.0-2.1	BH5_0.60-0.70	BH5_1.30-1.40	BH6_0.10-0.20
			001	001	001		001
			- SUIL	- 5012	- SOIL	- 5012	-
			24/5/2023	24/5/2023			
PARAMETER	UOM	LOR	SE248198.006	SE248198.007	SE248198.009	SE248198.010	SE248198.011
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Lindane (gamma BHC)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDE*	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Endrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o,p'-DDD*	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDT*	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin aldehyde	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin ketone	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Isodrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total CLP OC Pesticides	mg/kg	1	<1	<1	<1	<1	<1
Total OC VIC EPA	mg/kg	1	<1	<1	<1	<1	<1

OC Pesticides in Soil [AN420] Tested: 30/5/2023 (continued)

			BH7_0.5-0.6	BH7_1.5-1.6	BH8_0.20-0.30	BH8_0.90-1.00	BH9_0.10-0.20
			00"	001	001		001
			- SOIL	- 5012	- SOIL	- 5012	- SOIL
PARAMETER	UOM	LOR	SE248198.013	SE248198.014	SE248198.015	SE248198.017	SE248198.018
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Lindane (gamma BHC)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDE*	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Endrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o,p'-DDD*	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDT*	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin aldehyde	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin ketone	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Isodrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total CLP OC Pesticides	mg/kg	1	<1	<1	<1	<1	<1
Total OC VIC EPA	mg/kg	1	<1	<1	<1	<1	<1

OC Pesticides in Soil [AN420] Tested: 30/5/2023 (continued)

PRAMETER DOM LOR SOL. 29/6/2023 SOL. 22/6/2023 SOL. 22/6/2023 PRAMETER UOM LOR CO 20/6/2023 SE244198.020 Hexachhoroberzen (HGB) mg/kg 0.1 <0.1 <0.1 <0.1 Lindane (gamma BHC) mg/kg 0.1 <0.1 <0.1 <0.1 Hexachhoroberzen (HGB) mg/kg 0.1 <0.1 <0.1 <0.1 Lindane (gamma BHC) mg/kg 0.1 <0.1 <0.1 <0.1 Beta BHC mg/kg 0.1 <0.1 <0.1 <0.1 <0.1 Delta BHC mg/kg 0.1 <0.1 <0.1 <0.1 <0.1 Apha Erdosulfan mg/kg 0.1 <0.1 <td< th=""><th></th><th></th><th></th><th>BH10_0.20-0.30</th><th>BH11_0.50-0.60</th><th>BH12M_0.3-0.4</th></td<>				BH10_0.20-0.30	BH11_0.50-0.60	BH12M_0.3-0.4
PARAMETER UOM LOR Solution Solution Solution Solution PARAMETER UOM LOR Solution Solution				801	2011	2011
PRAME DUM LOR SE2491023 SE249198.025 29567023 SE249198.025 Hexachlorobersne (HCB) mg/kg 0.1 <0.1				-	-	-
PARAMETER UOM LOR SE24818.019 SE24818.020 SE24818.020 Haxachlorobenzene (HCB) mg/kg 0.1 <0.1						23/5/2023
Heachlorobenzene (HCB) mg/kg 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.	PARAMETER	UOM	LOR	SE248198.019	SE248198.020	SE248198.025
Alpha BHC mg/kg 0.1 <0.1 <0.1 <0.1 Lindane (gamma BHC) mg/kg 0.1 <0.1	Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	<0.1
Lindane (gamma BHC) mg/kg 0.1 <0.1 <0.1 <0.1 Heptachior mg/kg 0.1 <0.1	Alpha BHC	mg/kg	0.1	<0.1	<0.1	<0.1
Heptachlor mg/kg 0.1 <0.1 <0.1 <0.1 Adrin mg/kg 0.1 <0.1	Lindane (gamma BHC)	mg/kg	0.1	<0.1	<0.1	<0.1
Adm mg/kg 0.1 <0.1 <0.1 <0.1 Beta BHC mg/kg 0.1 <0.1	Heptachlor	mg/kg	0.1	<0.1	<0.1	<0.1
Beta BHC mg/kg 0.1 <0.1 <0.1 <0.1 Delta BHC mg/kg 0.1 <0.1	Aldrin	mg/kg	0.1	<0.1	<0.1	<0.1
Delta BHC mg/kg 0.1 <0.1 <0.1 <0.1 Heptachlor epoxide mg/kg 0.1 <0.1	Beta BHC	mg/kg	0.1	<0.1	<0.1	<0.1
Heptachlor epoxide mg/kg 0.1 <0.1 <0.1 <0.1 o.p'-DDE* mg/kg 0.1 <0.1	Delta BHC	mg/kg	0.1	<0.1	<0.1	<0.1
op/DDE* mg/kg 0.1 <0.1 <0.1 <0.1 Alpha Endosulfan mg/kg 0.2 <0.2	Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	<0.1
Alpha Endosulfan mg/kg 0.2 <0.2 <0.2 <0.2 Gamma Chlordane mg/kg 0.1 <0.1	o,p'-DDE*	mg/kg	0.1	<0.1	<0.1	<0.1
Gamma Chlordane mg/kg 0.1 <0.1 <0.1 <0.1 Alpha Chlordane mg/kg 0.1 <0.1	Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2
Alpha Chlordane mg/kg 0.1 <0.1 <0.1 <0.1 trans-Nonachlor mg/kg 0.1 <0.1	Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1
trans-Nonachlor mg/kg 0.1 <0.1 <0.1 <0.1 p,p'DDE mg/kg 0.1 <0.1	Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1
p.p.DDE mg/kg 0.1 <0.1 <0.1 <0.1 Dieldrin mg/kg 0.2 <0.2	trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	<0.1
Dieldrin mg/kg 0.2 <0.2 <0.2 <0.2 Endrin mg/kg 0.2 <0.2	p,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1
Endrin mg/kg 0.2 <0.2 <0.2 <0.2 o,p'DDD* mg/kg 0.1 <0.1	Dieldrin	mg/kg	0.2	<0.2	<0.2	<0.2
o.p. DD* mg/kg 0.1 <0.1 <0.1 <0.1 o.p. DD* mg/kg 0.1 <0.1	Endrin	mg/kg	0.2	<0.2	<0.2	<0.2
o.p. DDT* mg/kg 0.1 <0.1 <0.1 <0.1 Beta Endosulfan mg/kg 0.2 <0.2	o,p'-DDD*	mg/kg	0.1	<0.1	<0.1	<0.1
Beta Endosulfan mg/kg 0.2 <0.2 <0.2 <0.2 p,p'-DDD mg/kg 0.1 <0.1	o,p'-DDT*	mg/kg	0.1	<0.1	<0.1	<0.1
p.p.DDD mg/kg 0.1 <0.1 <0.1 <0.1 p.p.DDT mg/kg 0.1 <0.1	Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2
p.p-DDT mg/kg 0.1 <0.1 <0.1 <0.1 Endosulfan sulphate mg/kg 0.1 <0.1	p,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1
Endosulfan sulphate mg/kg 0.1 <0.1 <0.1 <0.1 Endrin aldehyde mg/kg 0.1 <0.1	p,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1
Endrin aldehyde mg/kg 0.1 <0.1 <0.1 <0.1 Methoxychlor mg/kg 0.1 <0.1	Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	<0.1
Methoxychlor mg/kg 0.1 <0.1 <0.1 <0.1 Endrin ketone mg/kg 0.1 <0.1	Endrin aldehyde	mg/kg	0.1	<0.1	<0.1	<0.1
Endrin ketone mg/kg 0.1 <0.1 <0.1 <0.1 Isodrin mg/kg 0.1 <0.1	Methoxychlor	mg/kg	0.1	<0.1	<0.1	<0.1
Isodrin mg/kg 0.1 <0.1 <0.1 <0.1 Mirex mg/kg 0.1 <0.1	Endrin ketone	mg/kg	0.1	<0.1	<0.1	<0.1
Mirex mg/kg 0.1 <0.1 <0.1 <0.1 Total CLP OC Pesticides mg/kg 1 <1	Isodrin	mg/kg	0.1	<0.1	<0.1	<0.1
Total CLP OC Pesticides mg/kg 1 <1 <1 Total OC VIC EPA mg/kg 1 <1	Mirex	mg/kg	0.1	<0.1	<0.1	<0.1
Total OC VIC EPA mg/kg 1 <1 <1 <1	Total CLP OC Pesticides	mg/kg	1	<1	<1	<1
	Total OC VIC EPA	mg/kg	1	<1	<1	<1

OP Pesticides in Soil [AN420] Tested: 30/5/2023

			BH1M_0.5-0.6	BH1M_2.0-2.1	BH2_0.1-0.2	BH2_1.5-1.6	BH3_0.20-0.30
			SOIL - 24/5/2023	SOIL - 24/5/2023	SOIL - 24/5/2023	SOIL - 24/5/2023	SOIL - 23/5/2023
PARAMETER	UOM	LOR	SE248198.001	SE248198.002	SE248198.003	SE248198.004	SE248198.005
Dichlorvos	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dimethoate	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Fenitrothion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Malathion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Methidathion	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ethion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total OP Pesticides*	mg/kg	1.7	<1.7	<1.7	<1.7	<1.7	<1.7

			BH4_0.5-0.6	BH4_2.0-2.1	BH5_0.60-0.70	BH5_1.30-1.40	BH6_0.10-0.20
			SOIL - 24/5/2023	SOIL - 24/5/2023	SOIL - 23/5/2023	SOIL - 23/5/2023	SOIL - 23/5/2023
PARAMETER	UOM	LOR	SE248198.006	SE248198.007	SE248198.009	SE248198.010	SE248198.011
Dichlorvos	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dimethoate	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Fenitrothion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Malathion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Methidathion	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ethion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total OP Pesticides*	mg/kg	1.7	<1.7	<1.7	<1.7	<1.7	<1.7

			BH7_0.5-0.6	BH7_1.5-1.6	BH8_0.20-0.30	BH8_0.90-1.00	BH9_0.10-0.20
			SOIL - 23/5/2023	SOIL - 23/5/2023	SOIL - 23/5/2023	SOIL - 23/5/2023	SOIL - 23/5/2023
PARAMETER	UOM	LOR	SE248198.013	SE248198.014	SE248198.015	SE248198.017	SE248198.018
Dichlorvos	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dimethoate	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Fenitrothion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Malathion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Methidathion	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ethion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total OP Pesticides*	mg/kg	1.7	<1.7	<1.7	<1.7	<1.7	<1.7

OP Pesticides in Soil [AN420] Tested: 30/5/2023 (continued)

			BH10_0.20-0.30	BH11_0.50-0.60	BH12M_0.3-0.4
			SOIL	SOIL	SOIL
					-
					23/5/2023
PARAMETER	UOM	LOR	SE248198.019	SE248198.020	SE248198.025
Dichlorvos	mg/kg	0.5	<0.5	<0.5	<0.5
Dimethoate	mg/kg	0.5	<0.5	<0.5	<0.5
Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	<0.5
Fenitrothion	mg/kg	0.2	<0.2	<0.2	<0.2
Malathion	mg/kg	0.2	<0.2	<0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	<0.2
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	<0.2
Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	<0.2
Methidathion	mg/kg	0.5	<0.5	<0.5	<0.5
Ethion	mg/kg	0.2	<0.2	<0.2	<0.2
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	<0.2
Total OP Pesticides*	mg/kg	1.7	<1.7	<1.7	<1.7

PCBs in Soil [AN420] Tested: 30/5/2023

			BH1M_0.5-0.6	BH1M_2.0-2.1	BH2_0.1-0.2	BH2_1.5-1.6	BH3_0.20-0.30
PARAMETER	UOM	LOR	SOIL - 24/5/2023 SE248198.001	SOIL - 24/5/2023 SE248198.002	SOIL - 24/5/2023 SE248198.003	SOIL - 24/5/2023 SE248198.004	SOIL - 23/5/2023 SE248198.005
Arochlor 1016	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1221	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1232	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1242	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1248	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1254	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1260	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1262	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1268	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PCBs (Arochlors)	mg/kg	1	<1	<1	<1	<1	<1

			BH4_0.5-0.6	BH4_2.0-2.1	BH5_0.60-0.70	BH5_1.30-1.40	BH6_0.10-0.20
			SOIL - 24/5/2023	SOIL - 24/5/2023	SOIL - 23/5/2023	SOIL - 23/5/2023	SOIL - 23/5/2023
PARAMETER	UOM	LOR	SE248198.006	SE248198.007	SE248198.009	SE248198.010	SE248198.011
Arochlor 1016	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1221	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1232	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1242	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1248	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1254	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1260	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1262	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1268	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PCBs (Arochlors)	mg/kg	1	<1	<1	<1	<1	<1

			BH7_0.5-0.6	BH7_1.5-1.6	BH8_0.20-0.30	BH8_0.90-1.00	BH9_0.10-0.20
PARAMETER	UOM	LOR	SOIL - 23/5/2023 SE248198.013	SOIL - 23/5/2023 SE248198.014	SOIL - 23/5/2023 SE248198.015	SOIL - 23/5/2023 SE248198.017	SOIL - 23/5/2023 SE248198.018
Arochlor 1016	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1221	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1232	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1242	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1248	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1254	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1260	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1262	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1268	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PCBs (Arochlors)	mg/kg	1	<1	<1	<1	<1	<1

PCBs in Soil [AN420] Tested: 30/5/2023 (continued)

			BH10_0.20-0.30	BH11_0.50-0.60	BH12M_0.3-0.4
			SOIL	SOIL	SOIL
			23/5/2023	23/5/2023	23/5/2023
PARAMETER	UOM	LOR	SE248198.019	SE248198.020	SE248198.025
Arochlor 1016	mg/kg	0.2	<0.2	<0.2	<0.2
Arochlor 1221	mg/kg	0.2	<0.2	<0.2	<0.2
Arochlor 1232	mg/kg	0.2	<0.2	<0.2	<0.2
Arochlor 1242	mg/kg	0.2	<0.2	<0.2	<0.2
Arochlor 1248	mg/kg	0.2	<0.2	<0.2	<0.2
Arochlor 1254	mg/kg	0.2	<0.2	<0.2	<0.2
Arochlor 1260	mg/kg	0.2	<0.2	<0.2	<0.2
Arochlor 1262	mg/kg	0.2	<0.2	<0.2	<0.2
Arochlor 1268	mg/kg	0.2	<0.2	<0.2	<0.2
Total PCBs (Arochlors)	mg/kg	1	<1	<1	<1

pH in soil (1:5) [AN101] Tested: 31/5/2023

			BH1M_2.0-2.1	BH2_1.5-1.6	BH4_2.0-2.1	BH5_1.30-1.40	BH7_1.5-1.6
			SOIL	SOIL	SOIL	SOIL	SOIL
			24/5/2023	24/5/2023	24/5/2023		
PARAMETER	UOM	LOR	SE248198.002	SE248198.004	SE248198.007	SE248198.010	SE248198.014
pH	pH Units	0.1	6.9	5.1	5.0	7.2	7.1

			BH8_0.90-1.00
			SOIL
			-
PARAMETER	UOM	LOR	SE248198.017
рН	pH Units	0.1	5.0

SE248198 R0

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES [AN040/AN320] Tested: 30/5/2023

			BH1M_0.5-0.6	BH1M_2.0-2.1	BH2_0.1-0.2	BH2_1.5-1.6	BH3_0.20-0.30
					00"	0.011	00"
			SOIL	SOIL	SOIL	SOIL	SOIL
			24/5/2023	24/5/2023	24/5/2023	24/5/2023	23/5/2023
PARAMETER	UOM	LOR	SE248198.001	SE248198.002	SE248198.003	SE248198.004	SE248198.005
Arsenic, As	mg/kg	1	3	5	3	8	2
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Chromium, Cr	mg/kg	0.5	13	5.6	12	8.4	16
Copper, Cu	mg/kg	0.5	120	97	54	24	99
Lead, Pb	mg/kg	1	6	14	25	16	5
Nickel, Ni	mg/kg	0.5	14	1.4	13	<0.5	20
Zinc, Zn	mg/kg	2	40	11	43	6.7	41

			BH4_0.5-0.6	BH4_2.0-2.1	BH5_0.20-0.30	BH5_0.60-0.70	BH5_1.30-1.40
			SOIL	SOIL	SOIL	SOIL	SOIL
			24/5/2023	24/5/2023			
PARAMETER	UOM	LOR	SE248198.006	SE248198.007	SE248198.008	SE248198.009	SE248198.010
Arsenic, As	mg/kg	1	2	8	-	3	9
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	-	<0.3	<0.3
Chromium, Cr	mg/kg	0.5	9.7	4.4	-	5.5	8.1
Copper, Cu	mg/kg	0.5	110	27	-	34	44
Lead, Pb	mg/kg	1	5	12	5	15	21
Nickel, Ni	mg/kg	0.5	11	<0.5	-	2.8	1.0
Zinc, Zn	mg/kg	2	36	5.4	-	13	12

			BH6_0.10-0.20	BH7_0.5-0.6	BH7_1.5-1.6	BH8_0.20-0.30	BH8_0.90-1.00
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
PARAMETER	UOM	LOR	23/5/2023 SE248198.011	23/5/2023 SE248198.013	23/5/2023 SE248198.014	23/5/2023 SE248198.015	23/5/2023 SE248198.017
Arsenic, As	mg/kg	1	5	4	3	5	7
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Chromium, Cr	mg/kg	0.5	9.4	11	4.6	28	20
Copper, Cu	mg/kg	0.5	52	24	14	15	4.2
Lead, Pb	mg/kg	1	34	13	11	27	17
Nickel, Ni	mg/kg	0.5	110	5.2	1.9	14	<0.5
Zinc, Zn	mg/kg	2	84	18	6.0	45	4.6

			BH9_0.10-0.20	BH10_0.20-0.30	BH11_0.50-0.60	QD1	BH12M_0.3-0.4
			SOIL	SOIL	SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	SE248198.018	SE248198.019	SE248198.020	SE248198.021	SE248198.025
Arsenic, As	mg/kg	1	7	4	3	3	6
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Chromium, Cr	mg/kg	0.5	11	13	22	3.1	14
Copper, Cu	mg/kg	0.5	15	11	73	13	21
Lead, Pb	mg/kg	1	39	30	7	15	33
Nickel, Ni	mg/kg	0.5	6.5	3.1	20	0.6	4.8
Zinc, Zn	mg/kg	2	47	27	43	3.7	35

Mercury in Soil [AN312] Tested: 30/5/2023

				1	1	1	1
			BH1M 0.5-0.6	BH1M 2.0-2.1	BH2 0.1-0.2	BH2 1.5-1.6	BH3 0.20-0.30
			-	-	-	_	-
			SOIL	SOIL	SOIL	SOIL	SOIL
			24/5/2023	24/5/2023	24/5/2023	24/5/2023	
PARAMETER	UOM	LOR	SE248198.001	SE248198.002	SE248198.003	SE248198.004	SE248198.005
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05

			BH4_0.5-0.6	BH4_2.0-2.1	BH5_0.60-0.70	BH5_1.30-1.40	BH6_0.10-0.20
			SOIL	SOIL	SOIL	SOIL	SOIL
			24/5/2023	24/5/2023			
PARAMETER	UOM	LOR	SE248198.006	SE248198.007	SE248198.009	SE248198.010	SE248198.011
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05

			BH7_0.5-0.6	BH7_1.5-1.6	BH8_0.20-0.30	BH8_0.90-1.00	BH9_0.10-0.20
			2011	2011	2011	2011	801
			3012	JUL		JUL	-
PARAMETER	UOM	LOR	SE248198.013	SE248198.014	SE248198.015	SE248198.017	SE248198.018
Mercury	mg/kg	0.05	<0.05	<0.05	0.22	<0.05	0.27

			BH10_0.20-0.30	BH11_0.50-0.60	QD1	BH12M_0.3-0.4
			SOIL	SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	SE248198.019	SE248198.020	SE248198.021	SE248198.025
Mercury	mg/kg	0.05	0.09	<0.05	<0.05	0.07

Moisture Content [AN002] Tested: 30/5/2023

			BH1M_0.5-0.6	BH1M_2.0-2.1	BH2_0.1-0.2	BH2_1.5-1.6	BH3_0.20-0.30
			SOIL	SOIL	SOIL	SOIL	SOIL
			24/5/2023	24/5/2023	24/5/2023	24/5/2023	
PARAMETER	UOM	LOR	SE248198.001	SE248198.002	SE248198.003	SE248198.004	SE248198.005
% Moisture	%w/w	1	10.1	10.3	9.5	10.7	13.7

			BH4_0.5-0.6	BH4_2.0-2.1	BH5_0.20-0.30	BH5_0.60-0.70	BH5_1.30-1.40
			SOIL	SOIL	SOIL	SOIL	SOIL
			24/5/2023	24/5/2023			
PARAMETER	UOM	LOR	SE248198.006	SE248198.007	SE248198.008	SE248198.009	SE248198.010
% Moisture	%w/w	1	13.0	11.1	11.2	16.2	7.8

			BH6_0.10-0.20	BH7_0.5-0.6	BH7_1.5-1.6	BH8_0.20-0.30	BH8_0.90-1.00
			SOIL	SOIL	SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	SE248198.011	SE248198.013	SE248198.014	SE248198.015	SE248198.017
% Moisture	%w/w	1	6.3	13.2	11.9	18.6	22.9

			BH9_0.10-0.20	BH10_0.20-0.30	BH11_0.50-0.60	QD1	TB1
			SOIL	SOIL	SOIL	SOIL	SOIL
			23/5/2023	23/5/2023	23/5/2023	23/5/2023	23/5/2023
PARAMETER	UOM	LOR	SE248198.018	SE248198.019	SE248198.020	SE248198.021	SE248198.022
% Moisture	%w/w	1	16.3	10.7	13.8	15.2	<1.0

			BH12M_0.3-0.4
			SOIL
PARAMETER	UOM	LOR	SE248198.025
% Moisture	%w/w	1	16.1

Fibre Identification in soil [AS4964/AN602] Tested: 31/5/2023

			BH1M_0.5-0.6	BH2_0.1-0.2	BH3_0.20-0.30	BH4_0.5-0.6	BH5_0.60-0.70
			SOIL	SOIL	SOIL	SOIL	SOIL
			24/5/2023	24/5/2023		24/5/2023	
PARAMETER	UOM	LOR	SE248198.001	SE248198.003	SE248198.005	SE248198.006	SE248198.009
Asbestos Detected	No unit	-	No	No	No	No	No
Estimated Fibres*	%w/w	0.01	<0.01	<0.01	<0.01	<0.01	<0.01

			BH6_0.10-0.20	BH7_0.5-0.6	BH8_0.20-0.30	BH9_0.10-0.20	BH10_0.20-0.30
			SOIL	SOIL	SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	SE248198.011	SE248198.013	SE248198.015	SE248198.018	SE248198.019
Asbestos Detected	No unit	-	No	No	No	No	No
Estimated Fibres*	%w/w	0.01	<0.01	<0.01	<0.01	<0.01	<0.01

			BH11_0.50-0.60	BH12M_0.3-0.4
			SOIL	SOIL
PARAMETER	UOM	LOR	SE248198.020	SE248198.025
Asbestos Detected	No unit	-	No	No
Estimated Fibres*	%w/w	0.01	<0.01	<0.01

Gravimetric Determination of Asbestos in Soil [AN605] Tested: 31/5/2023

			BH1M_0.5-0.6	BH2_0.1-0.2	BH3_0.20-0.30	BH4_0.5-0.6	BH5_0.60-0.70
			5011		5011		5011
			-	-	-	-	-
			24/5/2023	24/5/2023		24/5/2023	
PARAMETER	UOM	LOR	SE248198.001	SE248198.003	SE248198.005	SE248198.006	SE248198.009
Total Sample Weight*	g	1	682	501	653	882	809
Bonded ACM in >7mm Sample*	g	0.001	<0.001	<0.001	<0.001	<0.001	<0.001
AF/FA in >2mm to <7mm Sample*	g	0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001
AF/FA in <2mm Sample*	g	0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001
Asbestos in soil (>7mm ACM)*	%w/w	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Asbestos in soil (>2mm to <7mm AF/FA)*	%w/w	0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Asbestos in soil (<2mm AF/FA)*	%w/w	0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Asbestos in soil (<7mm AF/FA)*	%w/w	0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Fibre Type*	No unit	-	NAD	NAD	NAD	NAD	NAD

			BH6_0.10-0.20	BH7_0.5-0.6	BH8_0.20-0.30	BH9_0.10-0.20	BH10_0.20-0.30
			SOIL	SOIL	SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	SE248198.011	SE248198.013	SE248198.015	SE248198.018	SE248198.019
Total Sample Weight*	g	1	1068	675	748	703	767
Bonded ACM in >7mm Sample*	g	0.001	<0.001	<0.001	<0.001	<0.001	<0.001
AF/FA in >2mm to <7mm Sample*	g	0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001
AF/FA in <2mm Sample*	g	0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001
Asbestos in soil (>7mm ACM)*	%w/w	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Asbestos in soil (>2mm to <7mm AF/FA)*	%w/w	0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Asbestos in soil (<2mm AF/FA)*	%w/w	0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Asbestos in soil (<7mm AF/FA)*	%w/w	0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Fibre Type*	No unit	-	NAD	NAD	NAD	NAD	NAD

			BH11_0.50-0.60
			SOIL - 23/5/2023
PARAMETER	UOM	LOR	SE248198.020
Total Sample Weight*	g	1	171
Bonded ACM in >7mm Sample*	g	0.001	<0.001
AF/FA in >2mm to <7mm Sample*	g	0.00001	<0.00001
AF/FA in <2mm Sample*	g	0.00001	<0.00001
Asbestos in soil (>7mm ACM)*	%w/w	0.01	<0.01
Asbestos in soil (>2mm to <7mm AF/FA)*	%w/w	0.001	<0.001
Asbestos in soil (<2mm AF/FA)*	%w/w	0.001	<0.001
Asbestos in soil (<7mm AF/FA)*	%w/w	0.001	<0.001
Fibre Type*	No unit	-	NAD

Per- and Polyfluoroalkyl Substances (PFAS) in Solid Samples [MA-1523] Tested: 5/6/2023

			BH6_0.10-0.20	BH8_0.20-0.30	BH9_0.10-0.20	BH10_0.20-0.30
			001	00	001	001
			- SUIL	- SOIL	- SOIL	- SUIL
PARAMETER	UOM	LOR	SE248198.011	SE248198.015	SE248198.018	SE248198.019
Perfluorobutanoic acid (PFBA)	mg/kg	0.0016	<0.0016	<0.0016	<0.0016	<0.0016
Perfluoropentanoic acid (PFPeA)	mg/kg	0.0016	<0.0016	<0.0016	<0.0016	<0.0016
Perfluorohexanoic acid (PFHxA)	mg/kg	0.0016	<0.0016	<0.0016	<0.0016	<0.0016
Perfluoroheptanoic acid (PFHpA)	mg/kg	0.0016	<0.0016	<0.0016	<0.0016	<0.0016
Perfluorooctanoic Acid (PFOA)	mg/kg	0.0008	<0.0008	<0.0008	<0.0008	<0.0008
Perfluorononanoic acid (PFNA)	mg/kg	0.0016	<0.0016	<0.0016	<0.0016	<0.0016
Perfluorodecanoic acid (PFDA)	mg/kg	0.0016	<0.0016	<0.0016	<0.0016	<0.0016
Perfluoroundecanoic acid (PFUnA)	mg/kg	0.0016	<0.0016	<0.0016	<0.0016	<0.0016
Perfluorododecanoic acid (PFDoA)	mg/kg	0.0016	<0.0016	<0.0016	<0.0016	<0.0016
Perfluorotridecanoic acid (PFTrDA)	mg/kg	0.0016	<0.0016	<0.0016	<0.0016	<0.0016
Perfluorotetradecanoic acid (PFTeDA)	mg/kg	0.0016	<0.0016	<0.0016	<0.0016	<0.0016
Perfluorohexadecanoic acid (PFHxDA)	mg/kg	0.0032	<0.0032	<0.0032	<0.0032	<0.0032
Perfluorobutane sulfonate (PFBS)	mg/kg	0.0016	<0.0016	<0.0016	<0.0016	<0.0016
Perfluoropentane sulfonate (PFPeS)	mg/kg	0.0016	<0.0016	<0.0016	<0.0016	<0.0016
Perfluorohexane sulfonate (PFHxS)	mg/kg	0.0016	<0.0016	<0.0016	<0.0016	<0.0016
Perfluoroheptane sulfonate (PFHpS)	mg/kg	0.0016	<0.0016	<0.0016	<0.0016	<0.0016
Perfluorooctane sulfonate (PFOS)	mg/kg	0.0016	<0.0016	<0.0016	0.0018	<0.0016
Sum PFOS and PFHXS	mg/kg	0.0016	<0.0016	<0.0016	0.0018	<0.0016
Sum of US EPA PFAS (PFOS+PFOA)	mg/kg	0.0016	<0.0016	<0.0016	0.0018	<0.0016
Sum of enHealth PFAS (PFHxS+PFOS+PFOA)	mg/kg	0.0016	<0.0016	<0.0016	0.0018	<0.0016
Perfluorononane sulfonate (PFNS)	mg/kg	0.0016	<0.0016	<0.0016	<0.0016	<0.0016
Perfluorodecane sulfonate (PFDS)	mg/kg	0.0016	<0.0016	<0.0016	<0.0016	<0.0016
Perfluorododecane sulfonate (PFDoS)	mg/kg	0.0016	<0.0016	<0.0016	<0.0016	<0.0016
1H,1H,2H,2H-Perfluorohexane sulfonate (4:2) (4:2 FTS)	mg/kg	0.0016	<0.0016	<0.0016	<0.0016	<0.0016
1H,1H,2H,2H-Perfluorooctane sulfonate (6:2) (6:2 FTS)	mg/kg	0.0016	<0.0016	<0.0016	<0.0016	<0.0016
1H,1H,2H,2H-Perfluorodecane sulfonate (8:2) (8:2 FTS)	mg/kg	0.0016	<0.0016	<0.0016	<0.0016	<0.0016
1H,1H,2H,2H-Perfluorododecanesulfonic acid (10:2)	mg/kg	0.0016	-	-	-	-
Perfluoroctane sulfonamide (PFOSA)	mg/kg	0.0016	<0.0016	<0.0016	<0.0016	<0.0016
N-Methylperfluoroctane sulfonamide (N-MeFOSA)	mg/kg	0.008	<0.008	<0.008	<0.008	<0.008
N-Ethylperfluoroctane sulfonamide (N-EtFOSA)	mg/kg	0.008	<0.008	<0.008	<0.008	<0.008
2-(N-Methylperfluorooctane sulfonamido)-ethanol	mg/kg	0.016	<0.016	<0.016	<0.016	<0.016
2-(N-Ethylperfluorooctane sulfonamido)-ethanol	mg/kg	0.016	<0.016	<0.016	<0.016	<0.016
N-Methylperfluorooctanesulfonamidoacetic acid	mg/kg	0.008	<0.008	<0.008	<0.008	<0.008
N-Ethylperfluorooctanesulfonamidoacetic Acid	mg/kg	0.008	<0.008	<0.008	<0.008	<0.008
Total of PFAS (n=30)	mg/kg	0.08	<0.08	<0.08	<0.08	<0.08

VOCs in Water [AN433] Tested: 31/5/2023

			QR1
			WATER -
PARAMETER	UOM	LOR	SE248198.024
Benzene	µg/L	0.5	<0.5
Toluene	µg/L	0.5	<0.5
Ethylbenzene	µg/L	0.5	<0.5
m/p-xylene	µg/L	1	<1
o-xylene	µg/L	0.5	<0.5
Total Xylenes	µg/L	1.5	<1.5
Total BTEX	µg/L	3	<3
Naphthalene (VOC)*	µg/L	0.5	<0.5

Volatile Petroleum Hydrocarbons in Water [AN433] Tested: 31/5/2023

			QR1
			WATER
PARAMETER	UOM	LOR	SE248198.024
TRH C6-C9	µg/L	40	<40
Benzene (F0)	µg/L	0.5	<0.5
TRH C6-C10	µg/L	50	<50
TRH C6-C10 minus BTEX (F1)	µg/L	50	<50

SE248198 R0

TRH (Total Recoverable Hydrocarbons) in Water [AN403] Tested: 31/5/2023

			QR1
			WATER
			23/5/2023
PARAMETER	UOM	LOR	SE248198.024
TRH C10-C14	µg/L	50	<50
TRH C15-C28	µg/L	200	<200
TRH C29-C36	µg/L	200	<200
TRH C37-C40	µg/L	200	<200
TRH >C10-C16	µg/L	60	<60
TRH >C10-C16 - Naphthalene (F2)	µg/L	60	<60
TRH >C16-C34 (F3)	µg/L	500	<500
TRH >C34-C40 (F4)	µg/L	500	<500
TRH C10-C40	µg/L	320	<320

Trace Metals (Dissolved) in Water by ICPMS [AN318] Tested: 31/5/2023

			QR1
			WATER
PARAMETER	UOM	LOR	SE248198.024
Arsenic	µg/L	1	<1
Cadmium	µg/L	0.1	<0.1
Chromium	µg/L	1	<1
Copper	µg/L	1	<1
Lead	µg/L	1	<1
Nickel	µg/L	1	<1
Zinc	µg/L	5	<5

Mercury (dissolved) in Water [AN311(Perth)/AN312] Tested: 31/5/2023

			QR1
			WATER
PARAMETER	UOM	LOR	SE248198.024
Mercury	mg/L	0.0001	<0.0001

METHOD	
WLTHOD	
AN002	The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.
AN020	Unpreserved water sample is filtered through a 0.45µm membrane filter and acidified with nitric acid similar to APHA3030B.
AN040/AN320	A portion of sample is digested with nitric acid to decompose organic matter and hydrochloric acid to complete the digestion of metals. The digest is then analysed by ICP OES with metals results reported on the dried sample basis. Based on USEPA method 200.8 and 6010C.
AN040	A portion of sample is digested with Nitric acid to decompose organic matter and Hydrochloric acid to complete the digestion of metals and then filtered for analysis by AAS or ICP as per USEPA Method 200.8.
AN101	pH in Soil Sludge Sediment and Water: pH is measured electrometrically using a combination electrode and is calibrated against 3 buffers purchased commercially. For soils, sediments and sludges, an extract with water (or 0.01M CaCl2) is made at a ratio of 1:5 and the pH determined and reported on the extract. Reference APHA 4500-H+.
AN311(Perth)/AN312	Mercury by Cold Vapour AAS in Waters: Mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500.
AN312	Mercury by Cold Vapour AAS in Soils: After digestion with nitric acid, hydrogen peroxide and hydrochloric acid, mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500
AN318	Determination of elements at trace level in waters by ICP-MS technique,, referenced to USEPA 6020B and USEPA 200.8 (5.4).
AN403	Total Recoverable Hydrocarbons: Determination of Hydrocarbons by gas chromatography after a solvent extraction. Detection is by flame ionisation detector (FID) that produces an electronic signal in proportion to the combustible matter passing through it. Total Recoverable Hydrocarbons (TRH) are routinely reported as four alkane groupings based on the carbon chain length of the compounds: C6-C9, C10-C14, C15-C28 and C29-C36 and in recognition of the NEPM 1999 (2013), >C10-C16 (F2), >C16-C34 (F3) and >C34-C40 (F4). F2 is reported directly and also corrected by subtracting Naphthalene (from VOC method AN433) where available.
AN403	Additionally, the volatile C6-C9 fraction may be determined by a purge and trap technique and GC/MS because of the potential for volatiles loss. Total Recoverable Hydrocarbons - Silica (TRH-Si) follows the same method of analysis after silica gel cleanup of the solvent extract. Aliphatic/Aromatic Speciation follows the same method of analysis after fractionation of the solvent extract over silica with differential polarity of the eluent solvents.
AN403	The GC/FID method is not well suited to the analysis of refined high boiling point materials (ie lubricating oils or greases) but is particularly suited for measuring diesel, kerosene and petrol if care to control volatility is taken. This method will detect naturally occurring hydrocarbons, lipids, animal fats, phenols and PAHs if they are present at sufficient levels, dependent on the use of specific cleanup/fractionation techniques. Reference USEPA 3510B, 8015B.
AN420	(SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols (etc) in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D). Total PAH calculated from individual analyte detections at or above the limit of reporting.
AN420	SVOC Compounds: Semi-Volatile Organic Compounds (SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).
AN433	VOCs and C6-C9 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.
AN602/AS4964	Qualitative identification of chrysotile, amosite and crocidolite in bulk samples by polarised light microscopy (PLM) in conjunction with dispersion staining (DS). AS4964 provides the basis for this document. Unequivocal identification of the asbestos minerals present is made by obtaining sufficient diagnostic `clues`, which provide a reasonable degree of certainty, dispersion staining is a mandatory `clue` for positive identification. If sufficient `clues` are absent, then positive identification of asbestos is not possible. This procedure requires removal of suspect fibres/bundles from the sample which cannot be returned.
AN602/AS4964	Fibres/material that cannot be unequivocably identified as one of the three asbestos forms, will be reported as unknown mineral fibres (umf) The fibres detected may or may not be asbestos fibres.

AN602/AS4964	AS4964.2004 Method for the Qualitative Identification of Asbestos in Bulk Samples, Section 8.4, Trace Analysis Criteria, Note 4 states:"Depending upon sample condition and fibre type, the detection/reporting limit (RL) of this technique has been found to lie generally in the range of 1 in 1,000 to 1 in 10,000 parts by weight, equivalent to 1 to 0.1 g/kg."
AN602/AS4964	The sample can be reported "no asbestos found at the reporting limit (RL) of 0.1 g/kg" (<0.01%w/w) where AN602 section 4.5 of this method has been followed, and if-
	 (a) no trace asbestos fibres have been detected (i.e. no 'respirable' fibres): (b) the estimated weight of non-respirable asbestos fibre bundles and/or the estimated weight of asbestos in asbestos-containing materials are found to be less than 0.1g/kg: and (c) these non-respirable asbestos fibre bundles and/or the asbestos containing materials are only visible under stereo-microscope viewing conditions.
AN605	This technique gravimetrically determines the mass of Bonded Asbestos Containing Material retained on a 7mm Sieve and assumes that 15% of this ACM is asbestos. This calculated asbestos weight is then calculated as a percentage of the total sample weight. Any fibrous asbestos (FA) found in this fraction will be added to the 2-7mm fraction and its mass recorded there.
AN605	This technique also gravimetrically determines the mass of Fibrous Asbestos (FA) and Asbestos Fines (AF) Containing Material retained on and passing a 2mm sieve post 7mm sieving. Assumes that FA and AF are 100% asbestos containing. This calculated asbestos weight is then calculated as a percentage of the total sample weight. This does not include free/respirable fibres which are only observed by standard trace analysis as per AN602.
AN605	Bonded asbestos containing material (Bonded ACM) comprises asbestos-containing-material which is sound in condition. Fibrous asbestos (FA) comprises friable asbestos material and includes severely weathered cement sheet, insulation products and woven asbestos material. Asbestos fines (AF) includes free fibres, small fibre bundles and also small fragments of bonded ACM that passes through a 7mm sieve - which implies that the bonded ACM fragments have a substantial degree of damage which increases the potential for fibre release.
AN-605	Insofar as is technically feasible, this report is consistent with the analytical reporting recommendations in the Western Australian Department of Health Guidelines for the Assessment Remediation and Management of Asbestos - Contaminated Sites in Western Australia - May 2009 and NEPM 1999 (2013) schedule B1 section 4
MA-1523	This method covers the analysis of per- and polyfluoroalkyl substances (PFAS) in aqueous, solid and biosolid samples and solvent extracts, determined as the total of linear and branched isomers. After spiking with isotopically labelled quantification surrogates and clean-up via SPE cartridges sample extracts are analysed by liquid chromatography/mass spectrometry (LC-MS/MS). PFAS concentrations are determined by isotope dilution quantification.

FOOTNOTES -

*	NATA accreditation does not cover
	the performance of this service.
**	Indicative data, theoretical holding
	time exceeded.

*** Indicates that both * and ** apply.

Not analysed.
 NVL Not validated.
 IS Insufficient sample for analysis.
 LNR Sample listed, but not received.

UOM Unit of Measure. LOR Limit of Reporting. ↑↓ Raised/lowered Limit of Reporting.

Unless it is reported that sampling has been performed by SGS, the samples have been analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC and MU criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: <u>www.sgs.com.au/en-gb/environment-health-and-safety</u>.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This report must not be reproduced, except in full.

- CLIENT DETAILS -		LABORATORY DETAIL	LS
Contact Client	Andrew Schmidt EI AUSTRALIA	Manager Laboratory	Huong Crawford SGS Alexandria Environmental
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 95160722	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	andrew.schmidt@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E25996 1H Hospital Rd Concord	SGS Reference	SE248198 R0
Order Number	E25996	Date Received	25 May 2023
Samples	12	Date Reported	05 Jun 2023

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

No respirable fibres detected in all soil samples using trace analysis technique.

Asbestos analysed by Approved Identifier Yusuf Kuthpudin

PFAS subcontracted to SGS Melbourne, 10/585 Blackburn Road, Notting Hill, VIC, NATA Accreditation Numbe. 2562/14420.Report No. ME334472.

SIGNATORIES -

C

Yusuf KUTHPUDIN Asbestos Analyst

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

199

www.sgs.com.au

SE248198 R0

RESULTS -						
Fibre Identifica	tion in soil				Method	AN602
	Client		Sample			
Reference	Reference	Matrix	Description	Date Sampled	Fibre Identification	Est.%w/w*
SE248198.001	BH1M_0.5-0.6	Soil	682g Clay,Sand,Rock s,Bitumen	24 May 2023	No Asbestos Found at RL of 0.1g/kg	<0.01
SE248198.003	BH2_0.1-0.2	Soil	501g Clay,Sand,Rock s,Bitumen,Conc rete	24 May 2023	No Asbestos Found at RL of 0.1g/kg Organic Fibres Detected	<0.01
SE248198.005	BH3_0.20-0.30	Soil	653g Clay,Sand,Rock s	23 May 2023	No Asbestos Found at RL of 0.1g/kg	<0.01
SE248198.006	BH4_0.5-0.6	Soil	882g Sand,Rocks,Bit umen,Concrete	24 May 2023	No Asbestos Found at RL of 0.1g/kg	<0.01
SE248198.009	BH5_0.60-0.70	Soil	809g Clay,Sand,Soil, Rocks,Concrete	23 May 2023	No Asbestos Found at RL of 0.1g/kg Organic Fibres Detected	<0.01
SE248198.011	BH6_0.10-0.20	Soil	1068g Clay,Sand,Soil, Rocks	23 May 2023	No Asbestos Found at RL of 0.1g/kg Organic Fibres Detected	<0.01
SE248198.013	BH7_0.5-0.6	Soil	675g Clay,Sand,Rock s	23 May 2023	No Asbestos Found at RL of 0.1g/kg	<0.01
SE248198.015	BH8_0.20-0.30	Soil	748g Clay,Sand,Soil, Rocks	23 May 2023	No Asbestos Found at RL of 0.1g/kg Organic Fibres Detected	<0.01
SE248198.018	BH9_0.10-0.20	Soil	703g Clay,Sand,Soil, Rocks	23 May 2023	No Asbestos Found at RL of 0.1g/kg Organic Fibres Detected	<0.01
SE248198.019	BH10_0.20-0.30	Soil	767g Clay,Sand,Soil, Rocks	23 May 2023	No Asbestos Found at RL of 0.1g/kg Organic Fibres Detected	<0.01
SE248198.020	BH11_0.50-0.60	Soil	171g Sand,Rocks,Ce ment Mixture	23 May 2023	No Asbestos Found at RL of 0.1g/kg	<0.01
SE248198.025	BH12M_0.3-0.4	Soil	151g Clay,Sand,Rock s	23 May 2023	No Asbestos Found at RL of 0.1g/kg	<0.01

Gravimetric Determination of Asbestos in Soil [AN605] Tested: 31/5/2023

			BH1M_0.5-0.6	BH2_0.1-0.2	BH3_0.20-0.30	BH4_0.5-0.6	BH5_0.60-0.70
			SOIL	SOIL	SOIL	SOIL	SOIL
			24/5/2023	24/5/2023	23/5/2023	24/5/2023	23/5/2023
PARAMETER	UOM	LOR	SE248198.001	SE248198.003	SE248198.005	SE248198.006	SE248198.009
Total Sample Weight*	g	1	682	501	653	882	809
Bonded ACM in >7mm Sample*	g	0.001	<0.001	<0.001	<0.001	<0.001	<0.001
AF/FA in >2mm to <7mm Sample*	g	0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001
AF/FA in <2mm Sample*	g	0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001
Asbestos in soil (>7mm ACM)*	%w/w	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Asbestos in soil (>2mm to <7mm AF/FA)*	%w/w	0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Asbestos in soil (<2mm AF/FA)*	%w/w	0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Asbestos in soil (<7mm AF/FA)*	%w/w	0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Fibre Type*	No unit	-	NAD	NAD	NAD	NAD	NAD

			BH6_0.10-0.20	BH7_0.5-0.6	BH8_0.20-0.30	BH9_0.10-0.20	BH10_0.20-0.30
			SOIL	SOIL	SOIL	SOIL	SOIL
			23/5/2023	23/5/2023	23/5/2023	23/5/2023	23/5/2023
PARAMETER	UOM	LOR	SE248198.011	SE248198.013	SE248198.015	SE248198.018	SE248198.019
Total Sample Weight*	g	1	1068	675	748	703	767
Bonded ACM in >7mm Sample*	g	0.001	<0.001	<0.001	<0.001	<0.001	<0.001
AF/FA in >2mm to <7mm Sample*	g	0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001
AF/FA in <2mm Sample*	g	0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001
Asbestos in soil (>7mm ACM)*	%w/w	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Asbestos in soil (>2mm to <7mm AF/FA)*	%w/w	0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Asbestos in soil (<2mm AF/FA)*	%w/w	0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Asbestos in soil (<7mm AF/FA)*	%w/w	0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Fibre Type*	No unit	-	NAD	NAD	NAD	NAD	NAD

			BH11_0.50-0.60
PARAMETER	иом	LOR	SOIL - 23/5/2023 SE248198.020
Total Sample Weight*	g	1	171
Bonded ACM in >7mm Sample*	g	0.001	<0.001
AF/FA in >2mm to <7mm Sample*	g	0.00001	<0.00001
AF/FA in <2mm Sample*	g	0.00001	<0.00001
Asbestos in soil (>7mm ACM)*	%w/w	0.01	<0.01
Asbestos in soil (>2mm to <7mm AF/FA)*	%w/w	0.001	<0.001
Asbestos in soil (<2mm AF/FA)*	%w/w	0.001	<0.001
Asbestos in soil (<7mm AF/FA)*	%w/w	0.001	<0.001
Fibre Type*	No unit	-	NAD

METHOD SUMMARY

METHOD	
METHOD	METRODOLOGT SUMMART
AN602/AS4964	Qualitative identification of chrysotile, amosite and crocidolite in bulk samples by polarised light microscopy (PLM) in conjunction with dispersion staining (DS). AS4964 provides the basis for this document. Unequivocal identification of the asbestos minerals present is made by obtaining sufficient diagnostic `clues`, which provide a reasonable degree of certainty, dispersion staining is a mandatory `clue` for positive identification. If sufficient `clues` are absent, then positive identification of asbestos is not possible. This procedure requires removal of suspect fibres/bundles from the sample which cannot be returned.
AN602/AS4964	Fibres/material that cannot be unequivocably identified as one of the three asbestos forms, will be reported as unknown mineral fibres (umf) The fibres detected may or may not be asbestos fibres.
AN602/AS4964	AS4964.2004 Method for the Qualitative Identification of Asbestos in Bulk Samples, Section 8.4, Trace Analysis Criteria, Note 4 states:"Depending upon sample condition and fibre type, the detection/reporting limit (RL) of this technique has been found to lie generally in the range of 1 in 1,000 to 1 in 10,000 parts by weight, equivalent to 1 to 0.1 g/kg."
AN602/AS4964	The sample can be reported "no asbestos found at the reporting limit (RL) of 0.1 g/kg" (<0.01%w/w) where AN602 section 4.5 of this method has been followed, and if-
	 (a) no trace asbestos fibres have been detected (i.e. no 'respirable ' fibres): (b) the estimated weight of non-respirable asbestos fibre bundles and/or the estimated weight of asbestos in asbestos-containing materials are found to be less than 0.1g/kg: and (c) these non-respirable asbestos fibre bundles and/or the asbestos containing materials are only visible under stereo-microscope viewing conditions.
AN605	This technique gravimetrically determines the mass of Bonded Asbestos Containing Material retained on a 7mm Sieve and assumes that 15% of this ACM is asbestos. This calculated asbestos weight is then calculated as a percentage of the total sample weight. Any fibrous asbestos (FA) found in this fraction will be added to the 2-7mm fraction and its mass recorded there.
AN605	This technique also gravimetrically determines the mass of Fibrous Asbestos (FA) and Asbestos Fines (AF) Containing Material retained on and passing a 2mm sieve post 7mm sieving. Assumes that FA and AF are 100% asbestos containing. This calculated asbestos weight is then calculated as a percentage of the total sample weight. This does not include free/respirable fibres which are only observed by standard trace analysis as per AN602.
AN605	Bonded asbestos containing material (Bonded ACM) comprises asbestos-containing-material which is sound in condition. Fibrous asbestos (FA) comprises friable asbestos material and includes severely weathered cement sheet, insulation products and woven asbestos material. Asbestos fines (AF) includes free fibres, small fibre bundles and also small fragments of bonded ACM that passes through a 7mm sieve - which implies that the bonded ACM fragments have a substantial degree of damage which increases the potential for fibre release.
AN-605	Insofar as is technically feasible, this report is consistent with the analytical reporting recommendations in the Western Australian Department of Health Guidelines for the Assessment Remediation and Management of Asbestos - Contaminated Sites in Western Australia - May 2009 and NEPM 1999 (2013) schedule B1 section 4

FOOTNOTES

Amosite	-	Brown Asbestos	NA	-	Not Analysed
Chrysotile	-	White Asbestos	LNR	-	Listed, Not Required
Crocidolite	-	Blue Asbestos	*	-	NATA accreditation does not cover the performance of this service.
Amphiboles	-	Amosite and/or Crocidolite	**	-	Indicative data, theoretical holding time exceeded.
			***	-	Indicates that both * and ** apply.

(In reference to soil samples only) This report does not comply with the analytical reporting recommendations in the Western Australian Department of Health Guidelines for the Assessment and Remediation and Management of Asbestos Contaminated sites in Western Australia - May 2009.

Unless it is reported that sampling has been performed by SGS, the samples have been analysed as received.

Where reported: 'Asbestos Detected': Asbestos detected by polarised light microscopy, including dispersion staining. Where reported: 'No Asbestos Found': No Asbestos Found by polarised light microscopy, including dispersion staining. Where reported: 'UMF Detected': Mineral fibres of unknown type detected by polarised light microscopy, including dispersion staining. Confirmation by another independent analytical technique may be necessary.

Even after disintegration it can be very difficult, or impossible, to detect the presence of asbestos in some asbestos -containing bulk materials using polarised light microscopy. This is due to the low grade or small length or diameter of asbestos fibres present in the material, or to the fact that very fine fibres have been distributed intimately throughout the materials.

The QC and MU criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: <u>www.sgs.com.au/en-gb/environment-health-and-safety</u>.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.

- CLIENT DETAILS		LABORATORY DETAI	LS
Contact	Huong Crawford	Manager	Adam Atkinson
Client	SGS I&E SYDNEY	Laboratory	SGS Melbourne EH&S
Address	Unit 16, 33 Maddox Street Alexandria NSW 2015	Address	10/585 Blackburn Road Notting Hill Victoria 3168
Telephone	02 8594 0400	Telephone	+61395743200
Facsimile	02 8594 0499	Facsimile	+61395743399
Email	au.environmental.sydney@sgs.com	Email	Au.SampleReceipt.Melbourne@sgs.com
Project	E25996 1H Hospital Rd Concord	SGS Reference	ME334472 R0
Order Number	SE248198	Date Received	31 May 2023
Samples	25	Date Reported	05 Jun 2023

COMMENTS -

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562 (14420/22793/24472).

SIGNATORIES _

Sim Wan

Susan WAN Senior Chemist

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and

and Bldg 10,

Bldg 10, 585 Blackburn Rd Notting Hill VIC

Australia

t +61 3 9574 3200

f +61 3 9574 3399

www.sgs.com.au

ME334472 R0

		Sample Number	ME334472.001	ME334472.002	ME334472.003	ME334472.004
		Sample Matrix	Soil	Soil	Soil	Soil
		Sample Date Sample Name	24 May 2023 SE248198.001	24 May 2023 SE248198.002	24 May 2023 SE248198.003	24 May 2023 SE248198.004
		oumpio Numo	02240100.001	02240100.002	02240100.000	02240100.004
Parameter	Units	LOR				
Per- and Polyfluoroalkyl Substances (PFAS) in Solid Sa	mples Metho	d: MA-1523 Tes	sted: 5/6/2023			
	•					
Perfluorobutanoic acid (PFBA)	mg/kg	0.0016	-	-	-	-
Perfluoropentanoic acid (PFPeA)	mg/kg	0.0016	-	-	-	-
Perfluorohexanoic acid (PFHxA)	mg/kg	0.0016	-	-	-	-
Perfluoroheptanoic acid (PFHpA)	mg/kg	0.0016	-	-	-	-
Perfluorooctanoic Acid (PFOA)	mg/kg	0.0008	-	-	-	-
Perfluorononanoic acid (PFNA)	mg/kg	0.0016	-	-	-	-
Perfluorodecanoic acid (PFDA)	mg/kg	0.0016	-	-	-	-
Perfluoroundecanoic acid (PFUnA)	mg/kg	0.0016	-	-	-	-
Perfluorododecanoic acid (PFDoA)	mg/kg	0.0016	-	-	-	-
Perfluorotridecanoic acid (PFTrDA)	mg/kg	0.0016	-	-	-	-
Perfluorotetradecanoic acid (PFTeDA)	mg/kg	0.0016	-	-	-	-
Perfluorohexadecanoic acid (PFHxDA)	mg/kg	0.0032	-	-	-	-
Perfluorobutane sulfonate (PFBS)	mg/kg	0.0016	-	-	-	-
Perfluoropentane sulfonate (PFPeS)	mg/kg	0.0016	-	-	-	-
Perfluorohexane sulfonate (PFHxS)	mg/kg	0.0016	-	-	-	-
Perfluoroheptane sulfonate (PFHpS)	mg/kg	0.0016	-	-	-	-
Perfluorooctane sulfonate (PFOS)	mg/kg	0.0016	-	-	-	-
Sum PFOS and PFHXS	mg/kg	0.0016	-	-	-	-
Sum of US EPA PFAS (PFOS+PFOA)	mg/kg	0.0016	-	-	-	-
Sum of enHealth PFAS (PFHxS+PFOS+PFOA)	mg/kg	0.0016	-	-	-	-
Perfluorononane sulfonate (PFNS)	mg/kg	0.0016	-	-	-	-
Perfluorodecane sulfonate (PEDS)	ma/ka	0.0016	-	-	_	_
Perfluorododecane sulfonate (PEDoS)	ma/ka	0.0016	-	-	_	_
1H 1H 2H 2H-Perfluorohexane sulfonate (4:2) (4:2 FTS)	ma/ka	0.0016	_	_	_	
1H 1H 2H 2H-Perfluorooctane sulfonate (6:2) (6:2 FTS)	ma/ka	0.0016	_	_		
1H 1H 2H 2H-Perfluorodecane sulfonate (8:2) (8:2 FTS)	mg/kg	0.0016	_	-	_	
Perfluoroctane sulfonamide (PEOSA)	mg/kg	0.0016	_	-		
	mg/kg	0.0010	_	_		
N Ethylaefluoroctane sulfonamide (N EtEOSA)	mg/kg	0.008		_		
2 (N Mathylperfluorocate suitonamide (N-EurOSA)	mg/kg	0.000		-	-	
	mg/kg	0.016	-	-	-	-
2-(N-Envipernuorooctane suironamido)-etnanoi	mg/kg	0.016	-	-	-	-
	mg/kg	0.008	-	-	-	-
N-Ethylperfluorooctanesultonamidoacetic Acid	mg/kg	0.008	-	-	-	-
Total of PFAS (n=30)	mg/kg	0.08	-	-	-	-
(13C4-PFBA) Isotopically Labelled Internal Recovery	%	-	-	-	-	-
(13C5-PFPeA) Isotopically Labelled Internal Recovery	%	-	-	-	-	-
(13C5-PFHxA) Isotopically Labelled Internal Recovery	%	-	-	-	-	-
(13C4-PFHpA) Isotopically Labelled Internal Recovery	%	-	-	-	-	-
(13C4_PFOA) Isotopically Labelled Internal Recovery	%	-	-	-	-	-
(13C9-PFNA) Isotopically Labelled Internal Recovery	%	-	-	-	-	-
(13C6-PFDA) Isotopically Labelled Internal Recovery	%	-	-	-	-	-
(13C7-PFUdA) Isotopically Labelled Internal Recovery	%	-	-	-	-	-
(13C2-PFDoA) Isotopically Labelled Internal Recovery	%	-	-	-	-	-
(13C2_PFTeDA) Isotopically Labelled Internal Recovery	%	-	-	-	-	-
(13C2-PFHxDA) Isotopically Labelled Internal Recovery	%	-	-	-	-	-
(13C3-PFBS) Isotopically Labelled Internal Recovery	%	-	-	-	-	-
(13C3-PFHxS) Isotopically Labelled Internal Recovery	%	-	-	-	-	-
(13C8-PFOS) Isotopically Labelled Internal Recovery	%	-	-	-	-	-
(13C2-4:2 FTS) Isotopically Labelled Internal Recovery	%	-	-	-	-	-
(13C2-6:2 FTS) Isotopically Labelled Internal Recovery	%	-	-	-	-	-
(13C2-8:2 FTS) Isotopically Labelled Internal Recovery	%	-	-	-	-	-
(13C8-PFOSA) Isotopically Labelled Internal Recovery	%	-	-	-	-	-
(D3-N-MeFOSA) Isotopically Labelled Internal Recovery	%	-	-	-	-	-
(D5-N-EtFOSA) Isotopically Labelled Internal Recovery	%		-	-	-	-
(D7-N-MeFOSE) Isotopically Labelled Internal Recovery	%		-	-	-	-
(D9-N-EtFOSE) Isotopically Labelled Internal Recovery	%		-	-	_	_
(D3-N-MeFOSAA) Isotopically Labelled Internal Recoverv	%	_	-	-	_	_
(D5-N-EtFOSAA) Isotopically Labelled Internal Recovery	%		-	-	_	

ME334472 R0

Parameter	San Si S Units	nple Number ample Matrix Sample Date ample Name LOR	ME334472.001 Soil 24 May 2023 SE248198.001	ME334472.002 Soil 24 May 2023 SE248198.002	ME334472.003 Soil 24 May 2023 SE248198.003	ME334472.004 Soil 24 May 2023 SE248198.004
Moisture Content Method: AN002 Tested: 5/6/2023						
% Moisture	%w/w	1	-	-	-	-

ME334472 R0

		Sample Number	ME334472.005	ME334472.006	ME334472.007	ME334472.008
		Sample Matrix	Soil	Soil	Soil	Soil
		Sample Date Sample Name	23 May 2023 SF248198.005	24 May 2023 SF248198.006	24 May 2023 SF248198.007	23 May 2023 SF248198.008
		oampie Name	02240100.000	02240100.000	02240130.007	02240130.000
Parameter	Units	LOR				
Per, and Polyfluoroalkyl Substances (PFAS) in Solid Samples Method: MA-1523 Tested: 5/6/2023						
Perfluorobutanoic acid (PFBA)	mg/kg	0.0016	-	-	-	-
Perfluoropentanoic acid (PFPeA)	mg/kg	0.0016	-	-	-	-
Perfluorohexanoic acid (PFHxA)	mg/kg	0.0016	-	-	-	-
Perfluoroheptanoic acid (PFHpA)	mg/kg	0.0016	-	-	-	-
Perfluorooctanoic Acid (PFOA)	mg/kg	0.0008	-	-	-	-
Perfluorononanoic acid (PFNA)	mg/kg	0.0016	-	-	-	-
Perfluorodecanoic acid (PFDA)	ma/ka	0.0016	-	-	-	-
Perfluoroundecanoic acid (PEUnA)	ma/ka	0.0016	-	-	-	_
Perfluorododecanoic acid (PEDoA)	ma/ka	0.0016	_	-	-	
Perfluoretridecapoic acid (PETrDA)	mg/kg	0.0016				
Perflueretetredecepeie coid (PETeDA)	mg/kg	0.0016	-	-	-	-
	ilig/kg	0.0010	-	-	-	-
	mg/kg	0.0032	-	-	-	-
Perfluorobutane sultonate (PFBS)	mg/kg	0.0016	-	-	-	-
Perfluoropentane sulfonate (PFPeS)	mg/kg	0.0016	-	-	-	-
Perfluorohexane sulfonate (PFHxS)	mg/kg	0.0016	-	-	-	-
Perfluoroheptane sulfonate (PFHpS)	mg/kg	0.0016	-	-	-	-
Perfluorooctane sulfonate (PFOS)	mg/kg	0.0016	-	-	-	-
Sum PFOS and PFHXS	mg/kg	0.0016	-	-	-	-
Sum of US EPA PFAS (PFOS+PFOA)	mg/kg	0.0016	-	-	-	-
Sum of enHealth PFAS (PFHxS+PFOS+PFOA)	mg/kg	0.0016	-	-	-	-
Perfluorononane sulfonate (PFNS)	mg/kg	0.0016	-	-	-	-
Perfluorodecane sulfonate (PFDS)	mg/kg	0.0016	-	-	-	-
Perfluorododecane sulfonate (PFDoS)	mg/kg	0.0016	-	-	-	-
1H,1H,2H,2H-Perfluorohexane sulfonate (4:2) (4:2 FTS)	mg/kg	0.0016	-	-	-	-
1H,1H,2H,2H-Perfluorooctane sulfonate (6:2) (6:2 FTS)	mg/kg	0.0016	-	-	-	-
1H.1H.2H.2H-Perfluorodecane sulfonate (8:2) (8:2 FTS)	ma/ka	0.0016	-	-	-	-
Perfluoroctane sulfonamide (PEOSA)	ma/ka	0.0016	-	-	-	-
	mg/kg	0.008	_	_	_	_
N Ethylperfluoroctane sulfonamide (N EtEOSA)	mg/kg	0.008				
2 (N Methylastfuercestane sufferendide) ethered	mg/kg	0.016				
	mg/kg	0.016	-	-	-	
	ing/kg	0.016	-	-	-	-
N-Methylperfluorooctanesulfonamidoacetic acid	mg/kg	0.008	-	-	-	-
N-Ethylperfluorooctanesulfonamidoacetic Acid	mg/kg	0.008	-	-	-	-
Total of PFAS (n=30)	mg/kg	0.08	-	-	-	-
(13C4-PFBA) Isotopically Labelled Internal Recovery	%	-	-	-	-	-
(13C5-PFPeA) Isotopically Labelled Internal Recovery	%	-	-	-	-	-
(13C5-PFHxA) Isotopically Labelled Internal Recovery	%	-	-	-	-	-
(13C4-PFHpA) Isotopically Labelled Internal Recovery	%	-	-	-	-	-
(13C4_PFOA) Isotopically Labelled Internal Recovery	%	-	-	-	-	-
(13C9-PFNA) Isotopically Labelled Internal Recovery	%	-	-	-	-	-
(13C6-PFDA) Isotopically Labelled Internal Recovery	%	-	-	-	-	-
(13C7-PFUdA) Isotopically Labelled Internal Recovery	%	-	-	-	-	-
(13C2-PFDoA) Isotopically Labelled Internal Recovery	%	-	-	-	-	-
(13C2 PFTeDA) Isotopically Labelled Internal Recovery	%	_	_	-	-	-
(13C2-PEHxDA) Isotopically Labelled Internal Recovery	%		-	-	-	-
(13C3-PEBS) Isotonically Labelled Internal Recovery	%		_	_	_	
(12C2 PEHxS) loctorically Labelled Internal Receivery	9/					
(1300 PEOD) Isotopically Labelled Internal Recovery	/0	-	-	-	-	-
	<u>%</u>	-	-	-	-	-
(1302-4.2 FTS) Isotopically Labelled Internal Recovery	%	-	-	-	-	-
(13U2-6:2 FTS) Isotopically Labelled Internal Recovery	%	-	-	-	-	-
(13C2-8:2 FTS) Isotopically Labelled Internal Recovery	%	-	-	-	-	-
(13C8-PFOSA) Isotopically Labelled Internal Recovery	%	-	-	-	-	-
(D3-N-MeFOSA) Isotopically Labelled Internal Recovery	%	-	-	-	-	-
(D5-N-EtFOSA) Isotopically Labelled Internal Recovery	%	-	-	-	-	-
(D7-N-MeFOSE) Isotopically Labelled Internal Recovery	%	-	-	-	-	-
(D9-N-EtFOSE) Isotopically Labelled Internal Recovery	%	-	-	-	-	-
(D3-N-MeFOSAA) Isotopically Labelled Internal Recovery	%	-	-	-	-	-
(D5-N-EtFOSAA) Isotopically Labelled Internal Recovery	%	_	_	-	-	_

Parameter	San Sa Sa S S	nple Number ample Matrix Sample Date ample Name LOR	ME334472.005 Soil 23 May 2023 SE248198.005	ME334472.006 Soil 24 May 2023 SE248198.006	ME334472.007 Soil 24 May 2023 SE248198.007	ME334472.008 Soil 23 May 2023 SE248198.008
Moisture Content Method: AN002 Tested: 5/6/2023						
% Moisture	%w/w	1	-	-	-	-

		Sample Numb	er ME334472.009	ME334472.010	ME334472.011	ME334472.012
		Sample Matr	rix Soil to 23 May 2023	Soil 23 May 2023	Soil 23 May 2023	Soil 23 May 2023
		Sample Da	ne SE248198.009	SE248198.010	SE248198.011	SE248198.012
Parameter	Unit	s LOR				
Per- and Polyfluoroalkyl Substances (PFAS) in Solid Sa	amples Me	thod: MA-1523	Tested: 5/6/2023			
· · · · · · · · · · · · · · · · · · ·						
Perfluorobutanoic acid (PFBA)	mg/kg	0.0016	-	-	<0.0016	-
Perfluoropentanoic acid (PFPeA)	mg/kg	0.0016	-	-	<0.0016	-
Perfluorohexanoic acid (PFHxA)	mg/kg	0.0016	-	-	<0.0016	-
Perfluoroheptanoic acid (PFHpA)	mg/kg	0.0016	-	-	<0.0016	-
Perfluorooctanoic Acid (PFOA)	mg/kg	0.0008	-	-	<0.0008	-
Perfluorononanoic acid (PFNA)	mg/kg	0.0016	-	-	<0.0016	-
Perfluorodecanoic acid (PFDA)	mg/kg	0.0016	-	-	<0.0016	-
Perfluoroundecanoic acid (PFUnA)	mg/kg	0.0016	-	-	<0.0016	-
Perfluorododecanoic acid (PFDoA)	mg/kg	0.0016	-	-	<0.0016	-
Perfluorotridecanoic acid (PFTrDA)	mg/kg	0.0016	-	-	<0.0016	-
Perfluorotetradecanoic acid (PFTeDA)	mg/kg	0.0016	-	-	<0.0016	-
Perfluorohexadecanoic acid (PFHxDA)	mg/kg	0.0032	-	_	<0.0032	-
Perfluorobutane sulfonate (PFBS)	ma/ka	0.0016	-	-	<0.0016	_
Perfluoropentane sulfonate (PEPeS)	ma/ka	0.0016	-	-	<0.0016	-
Perfluorohexane sulfonate (PEHxS)	mg/kg	0.0016			<0.0016	_
Porfuerobantona culfonate (PEHaS)	mg/kg	0.0016			<0.0016	
	iiig/kg	0.0010	-	-	<0.0010	-
	mg/kg	0.0016	-	-	<0.0016	-
Sum PEOS and PEHXS	mg/kg	0.0016	-	-	<0.0016	-
Sum of US EPA PEAS (PEOS+PEOA)	mg/kg	0.0016	-	-	<0.0016	-
Sum of enHealth PFAS (PFHxS+PFOS+PFOA)	mg/kg	0.0016	-	-	<0.0016	-
Perfluorononane sulfonate (PFNS)	mg/kg	0.0016	-	-	<0.0016	-
Perfluorodecane sulfonate (PFDS)	mg/kg	0.0016	-	-	<0.0016	-
Perfluorododecane sulfonate (PFDoS)	mg/kg	0.0016	-	-	<0.0016	-
1H,1H,2H,2H-Perfluorohexane sulfonate (4:2) (4:2 FTS)	mg/kg	0.0016	-	-	<0.0016	-
1H,1H,2H,2H-Perfluorooctane sulfonate (6:2) (6:2 FTS)	mg/kg	0.0016	-	-	<0.0016	-
1H,1H,2H,2H-Perfluorodecane sulfonate (8:2) (8:2 FTS)	mg/kg	0.0016	-	-	<0.0016	-
Perfluoroctane sulfonamide (PFOSA)	mg/kg	0.0016	-	-	<0.0016	-
N-Methylperfluoroctane sulfonamide (N-MeFOSA)	mg/kg	0.008	-	-	<0.008	-
N-Ethylperfluoroctane sulfonamide (N-EtFOSA)	mg/kg	0.008	-	-	<0.008	-
2-(N-Methylperfluorooctane sulfonamido)-ethanol	mg/kg	0.016	-	-	<0.016	-
2-(N-Ethylperfluorooctane sulfonamido)-ethanol	mg/kg	0.016	-	-	<0.016	-
N-Methylperfluorooctanesulfonamidoacetic acid	mg/kg	0.008	-	-	<0.008	-
N-Ethylperfluorooctanesulfonamidoacetic Acid	mg/kg	0.008	-	-	<0.008	-
Total of PFAS (n=30)	mg/kg	0.08	-	_	<0.08	-
(13C4-PFBA) Isotopically Labelled Internal Recovery	%		-	-	101	_
(13C5-PEPeA) Isotopically Labelled Internal Recovery	%		-	-	103	-
(13C5-PEHxA) Isotopically Labelled Internal Recovery	%		_		101	_
(13C4 PEHpA) Isotopically Labelled Internal Recovery	%				107	
(13C4_PEOA) Isotopically Labelled Internal Recovery	/6	-	-	-	140	-
	/0		-	-		-
(13C9-PFNA) isotopically Labelled Internal Recovery	70		-	-	97	-
(13C6-PFDA) Isotopically Labelled Internal Recovery	%	-	-	-	100	-
(13C7-PFUdA) Isotopically Labelled Internal Recovery	%	-	-	-	90	-
(13C2-PFDoA) Isotopically Labelled Internal Recovery	%	-	-	-	77	-
(13C2_PFTeDA) Isotopically Labelled Internal Recovery	%	-	-	-	33	-
(13C2-PFHxDA) Isotopically Labelled Internal Recovery	%	-	-	-	13	-
(13C3-PFBS) Isotopically Labelled Internal Recovery	%	-	-	-	103	-
(13C3-PFHxS) Isotopically Labelled Internal Recovery	%	-	-	-	113	-
(13C8-PFOS) Isotopically Labelled Internal Recovery	%	-	-	-	119	-
(13C2-4:2 FTS) Isotopically Labelled Internal Recovery	%	-	-	-	85	-
(13C2-6:2 FTS) Isotopically Labelled Internal Recovery	%	-	-	-	84	-
(13C2-8:2 FTS) Isotopically Labelled Internal Recovery	%	-	-	-	85	-
(13C8-PFOSA) Isotopically Labelled Internal Recovery	%	-	-	-	94	-
(D3-N-MeFOSA) Isotopically Labelled Internal Recovery	%	-	-	-	50	-
(D5-N-EtFOSA) Isotopically Labelled Internal Recovery	%	-	-	-	39	-
(D7-N-MeFOSE) Isotopically Labelled Internal Recovery	%	-	-	-	64	-
(D9-N-EtFOSE) Isotopically Labelled Internal Recoverv	%		-	_	58	_
(D3-N-MeFOSAA) Isotopically Labelled Internal Recovery	%		-	_	66	_
(D5-N-EtFOSAA) Isotopically Labelled Internal Recovery	%		-	-	58	_

Parameter	Sam Sa Sa Sa Sa	nple Number Imple Matrix Sample Date ample Name LOR	ME334472.009 Soil 23 May 2023 SE248198.009	ME334472.010 Soil 23 May 2023 SE248198.010	ME334472.011 Soil 23 May 2023 SE248198.011	ME334472.012 Soil 23 May 2023 SE248198.012
Moisture Content Method: AN002 Tested: 5/6/2023	}					
% Moisture	%w/w	1	-	-	5.1	-

		Sample Number	ME334472.013	ME334472.014	ME334472.015	ME334472.016
		Sample Matrix	Soil	Soil	Soil	Soil
		Sample Date Sample Name	23 May 2023 SF248198.013	23 May 2023 SF248198.014	23 May 2023 SF248198.015	23 May 2023 SF248198.016
		oampie Name	02240130.013	02240130.014	02240130.013	02240130.010
Parameter	Units	LOR				
Per- and Polvfluoroalkyl Substances (PFAS) in Solid Sa	amples Method	: MA-1523 Tes	sted: 5/6/2023			
	•					
Perfluorobutanoic acid (PFBA)	mg/kg	0.0016	-	-	<0.0016	-
Perfluoropentanoic acid (PFPeA)	mg/kg	0.0016	-	-	<0.0016	-
Perfluorohexanoic acid (PFHxA)	mg/kg	0.0016	-	-	<0.0016	-
Perfluoroheptanoic acid (PFHpA)	mg/kg	0.0016	-	-	<0.0016	-
Perfluorooctanoic Acid (PFOA)	mg/kg	0.0008	-	-	<0.0008	-
Perfluorononanoic acid (PFNA)	mg/kg	0.0016	-	-	<0.0016	-
Perfluorodecanoic acid (PFDA)	mg/kg	0.0016	-	-	<0.0016	-
Perfluoroundecanoic acid (PFUnA)	mg/kg	0.0016	-	-	<0.0016	-
Perfluorododecanoic acid (PFDoA)	mg/kg	0.0016	-	-	<0.0016	-
Perfluorotridecanoic acid (PFTrDA)	mg/kg	0.0016	-	-	<0.0016	-
Perfluorotetradecanoic acid (PFTeDA)	mg/kg	0.0016	-	-	<0.0016	-
Perfluorohexadecanoic acid (PFHxDA)	mg/kg	0.0032	-	-	<0.0032	-
Perfluorobutane sulfonate (PFBS)	mg/kg	0.0016	-	-	<0.0016	-
Perfluoropentane sulfonate (PFPeS)	mg/kg	0.0016	-	-	<0.0016	-
Perfluorohexane sulfonate (PFHxS)	mg/kg	0.0016	-	-	<0.0016	-
Perfluoroheptane sulfonate (PFHpS)	mg/kg	0.0016	-	-	<0.0016	-
Perfluorooctane sulfonate (PFOS)	mg/kg	0.0016	-	-	<0.0016	-
Sum PFOS and PFHXS	mg/kg	0.0016	-	-	<0.0016	-
Sum of US EPA PFAS (PFOS+PFOA)	mg/kg	0.0016	-	-	<0.0016	-
Sum of enHealth PFAS (PFHxS+PFOS+PFOA)	mg/kg	0.0016	-	-	<0.0016	-
Perfluorononane sulfonate (PFNS)	mg/kg	0.0016	-	-	<0.0016	-
Perfluorodecane sulfonate (PFDS)	mg/kg	0.0016	-	-	<0.0016	-
Perfluorododecane sulfonate (PFDoS)	mg/kg	0.0016	-	-	<0.0016	-
1H,1H,2H,2H-Perfluorohexane sulfonate (4:2) (4:2 FTS)	mg/kg	0.0016	-	-	<0.0016	-
1H,1H,2H,2H-Perfluorooctane sulfonate (6:2) (6:2 FTS)	mg/kg	0.0016	-	-	<0.0016	-
1H,1H,2H,2H-Perfluorodecane sulfonate (8:2) (8:2 FTS)	mg/kg	0.0016	-	-	<0.0016	-
Perfluoroctane sulfonamide (PFOSA)	mg/kg	0.0016	-	-	<0.0016	-
N-Methylperfluoroctane sulfonamide (N-MeFOSA)	ma/ka	0.008	_	-	<0.008	_
N-Ethylperfluoroctane sulfonamide (N-EtFOSA)	ma/ka	0.008	_	-	<0.008	-
2-(N-Methylperfluorooctane sulfonamido)-ethanol	ma/ka	0.016	-	-	<0.016	_
2-(N-Ethylperfluorooctane sulfonamido)-ethanol	ma/ka	0.016	-	-	<0.016	_
N-Methylperfluorooctanesulfonamidoacetic acid	ma/ka	0.008	-	-	<0.008	_
N-Ethylperfluorooctanesulfonamidoacetic Acid	mg/kg	0.008	_	_	<0.008	_
Total of PFAS (n=30)	mg/kg	0.08	_	-	<0.08	_
(13C4-PEBA) Isotopically Labelled Internal Recovery	····g···g		_	_	103	
(13C5-PEPeA) Isotonically Labelled Internal Recovery	%		_	_	102	_
(13C5 PEHxA) Isotopically Labelled Internal Recovery	0/				132	
	/8	-	_	-	132	
(13C4_PEOA) Isotopically Labelled Internal Recovery	/6	-	-	-	03	-
(1304_FFOA) isotopically Labelled Internal Recovery	/0	-	-	-	93	-
(13C9-PFNA) isotopically Labelled Internal Recovery	76	-	-	-	116	-
(13C6-PFDA) isotopically Labelled Internal Recovery	76	-	-	-	93	-
(13C7-PFUdA) Isotopically Labelled Internal Recovery	%	-	-	-	69	-
(13C2-PFDoA) Isotopically Labelled Internal Recovery	%	-	-	-	66	-
	%	-	-	-	65	-
(13C2-PFHxDA) Isotopically Labelled Internal Recovery	%	-	-	-	83	-
(13C3-PFBS) Isotopically Labelled Internal Recovery	%	-	-	-	135	-
(13C3-PFHxS) Isotopically Labelled Internal Recovery	%	-	-	-	105	-
(13C8-PFOS) Isotopically Labelled Internal Recovery	%	-	-	-	93	-
(13C2-4:2 FTS) Isotopically Labelled Internal Recovery	%	-	-	-	121	-
(13C2-6:2 FTS) Isotopically Labelled Internal Recovery	%	-	-	-	104	-
(13C2-8:2 FTS) Isotopically Labelled Internal Recovery	%	-	-	-	79	-
(13C8-PFOSA) Isotopically Labelled Internal Recovery	%	-	-	-	79	-
(D3-N-MeFOSA) Isotopically Labelled Internal Recovery	%	-	-	-	59	-
(D5-N-EtFOSA) Isotopically Labelled Internal Recovery	%	-	-	-	51	-
(D7-N-MeFOSE) Isotopically Labelled Internal Recovery	%	-	-	-	90	-
(D9-N-EtFOSE) Isotopically Labelled Internal Recovery	%	-	-	-	67	-
(D3-N-MeFOSAA) Isotopically Labelled Internal Recovery	%	-	-	-	60	-
(D5-N-EtFOSAA) Isotopically Labelled Internal Recovery	%	-	-	-	68	-

Parameter	Sam Sa Sa Sa Sa	nple Number Imple Matrix Sample Date ample Name LOR	ME334472.013 Soil 23 May 2023 SE248198.013	ME334472.014 Soil 23 May 2023 SE248198.014	ME334472.015 Soil 23 May 2023 SE248198.015	ME334472.016 Soil 23 May 2023 SE248198.016
Moisture Content Method: AN002 Tested: 5/6/2023						
% Moisture	%w/w	1	-	-	16.6	-

		Sample Number	ME334472.017	ME334472.018	ME334472.019	ME334472.020
		Sample Matrix Sample Date	50il 23 May 2023	SOII 23 May 2023	SOII 23 May 2023	SOII 23 May 2023
		Sample Name	SE248198.017	SE248198.018	SE248198.019	SE248198.020
Parameter	Units	LOR				
Per- and Polyfluoroalkyl Substances (PFAS) in Solid Sa	mples Metho	d: MA-1523 Te	sted: 5/6/2023			
Perfluorobutancia acid (PERA)	ma/ka	0.0016	_	<0.0016	<0.0016	
	mg/kg	0.0016	-	<0.0016	<0.0016	-
	mg/kg	0.0016	-	<0.0016	<0.0016	-
Perfluorohentanoic acid (PEHnA)	mg/kg	0.0016		<0.0016	<0.0016	
Perfluorooctanoic Acid (PEOA)	mg/kg	0.0008		<0.0018	<0.0018	
Perfluorononanoic acid (PENA)	mg/kg	0.0016		<0.0016	<0.0000	
Perfluorodecapoic acid (PEDA)	mg/kg	0.0016		<0.0016	<0.0016	
Perfluoroundecanoic acid (PELInA)	mg/kg	0.0016		<0.0016	<0.0016	
Perfluorododecanoic acid (PEDoA)	mg/kg	0.0016		<0.0016	<0.0016	
Perfluorotridecanoic acid (PETrDA)	mg/kg	0.0016		<0.0016	<0.0016	
Perflueretetradecepaia coid (PETeDA)	mg/kg	0.0016	-	<0.0016	<0.0016	-
	mg/kg	0.0016	-	<0.0018	<0.0018	-
Perluoronexadecanoic acid (PERXDA)	mg/kg	0.0032	-	<0.0032	<0.0032	-
Perfueroparters sulfanete (PFBS)	mg/kg	0.0016	-	<0.0016	<0.0016	-
Perfuoropentane suironate (PFPeS)	mg/kg	0.0016	-	<0.0018	<0.0010	-
Periluoronexane sulfonate (PFHxS)	mg/kg	0.0016	-	<0.0016	<0.0016	-
Perfluoroneptane sulfonate (PFHpS)	mg/kg	0.0016	-	<0.0016	<0.0016	-
Perfluorooctane sultonate (PFOS)	mg/kg	0.0016	-	0.0018	<0.0016	-
Sum PFOS and PFHXS	mg/kg	0.0016	-	0.0018	<0.0016	-
Sum of US EPA PFAS (PFOS+PFOA)	mg/kg	0.0016	-	0.0018	<0.0016	-
Sum of enHealth PFAS (PFHxS+PFOS+PFOA)	mg/kg	0.0016	-	0.0018	<0.0016	-
Perfluorononane sulfonate (PFNS)	mg/kg	0.0016	-	<0.0016	<0.0016	-
Perfluorodecane sulfonate (PFDS)	mg/kg	0.0016	-	<0.0016	<0.0016	-
Perfluorododecane sulfonate (PFDoS)	mg/kg	0.0016	-	<0.0016	<0.0016	-
1H,1H,2H,2H-Perfluorohexane sulfonate (4:2) (4:2 FTS)	mg/kg	0.0016	-	<0.0016	<0.0016	-
1H,1H,2H,2H-Perfluorooctane sulfonate (6:2) (6:2 FTS)	mg/kg	0.0016	-	<0.0016	<0.0016	-
1H,1H,2H,2H-Perfluorodecane sulfonate (8:2) (8:2 FTS)	mg/kg	0.0016	-	<0.0016	<0.0016	-
Perfluoroctane sulfonamide (PFOSA)	mg/kg	0.0016	-	<0.0016	<0.0016	-
N-Methylperfluoroctane sulfonamide (N-MeFOSA)	mg/kg	0.008	-	<0.008	<0.008	-
N-Ethylperfluoroctane sulfonamide (N-EtFOSA)	mg/kg	0.008	-	<0.008	<0.008	-
2-(N-Methylperfluorooctane sulfonamido)-ethanol	mg/kg	0.016	-	<0.016	<0.016	-
2-(N-Ethylperfluorooctane sulfonamido)-ethanol	mg/kg	0.016	-	<0.016	<0.016	-
N-Methylperfluorooctanesulfonamidoacetic acid	mg/kg	0.008	-	<0.008	<0.008	-
N-Ethylperfluorooctanesulfonamidoacetic Acid	mg/kg	0.008	-	<0.008	<0.008	-
Total of PFAS (n=30)	mg/kg	0.08	-	<0.08	<0.08	
(13C4-PFBA) Isotopically Labelled Internal Recovery	%	-				-
(13C5-PFPeA) Isotopically Labelled Internal Recovery			-	102	99	-
	%	-	-	102 104	99 100	-
(13C5-PFHxA) Isotopically Labelled Internal Recovery	%	-	-	102 104 96	99 100 150	- - - -
(13C5-PFHxA) Isotopically Labelled Internal Recovery (13C4-PFHpA) Isotopically Labelled Internal Recovery	%		-	102 104 96 95	99 100 150 141	- - - - -
(13C5-PFHxA) Isotopically Labelled Internal Recovery (13C4-PFHpA) Isotopically Labelled Internal Recovery (13C4_PFOA) Isotopically Labelled Internal Recovery	% % %		- - - - -	102 104 96 95 83	99 100 150 141 93	- - - - - -
(13C5-PFHxA) Isotopically Labelled Internal Recovery (13C4-PFHpA) Isotopically Labelled Internal Recovery (13C4_PFOA) Isotopically Labelled Internal Recovery (13C9-PFNA) Isotopically Labelled Internal Recovery	% % % %		- - - - - - -	102 104 96 95 83 117	99 100 150 141 93 96	- - - - - - - -
(13C5-PFHxA) Isotopically Labelled Internal Recovery (13C4-PFHpA) Isotopically Labelled Internal Recovery (13C4_PFOA) Isotopically Labelled Internal Recovery (13C9-PFNA) Isotopically Labelled Internal Recovery (13C6-PFDA) Isotopically Labelled Internal Recovery	% % % % %		- - - - - - - - -	102 104 96 95 83 117 111	99 100 150 141 93 96 85	- - - - - - - - - -
(13C5-PFHxA) Isotopically Labelled Internal Recovery (13C4-PFHpA) Isotopically Labelled Internal Recovery (13C4_PFOA) Isotopically Labelled Internal Recovery (13C9-PFNA) Isotopically Labelled Internal Recovery (13C6-PFDA) Isotopically Labelled Internal Recovery (13C7-PFUdA) Isotopically Labelled Internal Recovery	% % % % %		- - - - - - - - - - -	102 104 96 95 83 117 111 86	99 100 150 141 93 96 85 80	- - - - - - - - - - - - -
(13C5-PFHxA) Isotopically Labelled Internal Recovery (13C4-PFHpA) Isotopically Labelled Internal Recovery (13C4_PFOA) Isotopically Labelled Internal Recovery (13C9-PFNA) Isotopically Labelled Internal Recovery (13C6-PFDA) Isotopically Labelled Internal Recovery (13C7-PFUdA) Isotopically Labelled Internal Recovery (13C2-PFDoA) Isotopically Labelled Internal Recovery	% % % % %		- - - - - - - - - - - - - - -	102 104 96 95 83 117 111 86 73	99 100 150 141 93 96 85 80 81	- - - - - - - - - - - - - - - - -
(13C5-PFHxA) Isotopically Labelled Internal Recovery (13C4-PFHpA) Isotopically Labelled Internal Recovery (13C4_PFOA) Isotopically Labelled Internal Recovery (13C9-PFNA) Isotopically Labelled Internal Recovery (13C6-PFDA) Isotopically Labelled Internal Recovery (13C7-PFUdA) Isotopically Labelled Internal Recovery (13C2-PFDoA) Isotopically Labelled Internal Recovery (13C2_PFTeDA) Isotopically Labelled Internal Recovery	% % % % % %		- - - - - - - - - - - - - - - - - -	102 104 96 95 83 117 111 86 73 43	99 100 150 141 93 96 85 80 81 82	- - - - - - - - - - - - - - - -
(13C5-PFHxA) Isotopically Labelled Internal Recovery (13C4-PFHpA) Isotopically Labelled Internal Recovery (13C4_PFOA) Isotopically Labelled Internal Recovery (13C9-PFNA) Isotopically Labelled Internal Recovery (13C6-PFDA) Isotopically Labelled Internal Recovery (13C7-PFUdA) Isotopically Labelled Internal Recovery (13C2-PFDoA) Isotopically Labelled Internal Recovery (13C2_PFTeDA) Isotopically Labelled Internal Recovery (13C2_PFTeDA) Isotopically Labelled Internal Recovery (13C2_PFTeDA) Isotopically Labelled Internal Recovery (13C2_PFTADA) Isotopically Labelled Internal Recovery	% % % % % %		- - - - - - - - - - - - - - - - - - -	102 104 96 95 83 117 111 86 73 43 26	99 100 150 141 93 96 85 85 80 81 81 82 132	- - - - - - - - - - - - - - - - - - -
(13C5-PFHxA) Isotopically Labelled Internal Recovery (13C4-PFHpA) Isotopically Labelled Internal Recovery (13C4_PFOA) Isotopically Labelled Internal Recovery (13C9-PFNA) Isotopically Labelled Internal Recovery (13C6-PFDA) Isotopically Labelled Internal Recovery (13C7-PFUdA) Isotopically Labelled Internal Recovery (13C2_PFTeDA) Isotopically Labelled Internal Recovery (13C2_PFTeDA) Isotopically Labelled Internal Recovery (13C2_PFTeDA) Isotopically Labelled Internal Recovery (13C2_PFTeDA) Isotopically Labelled Internal Recovery (13C3_PFTeDA) Isotopically Labelled Internal Recovery (13C3_PFBS) Isotopically Labelled Internal Recovery	% % % % % % %		- - - - - - - - - - - - - - - - - - -	102 104 96 95 83 117 111 86 73 43 43 26 99	99 100 150 141 93 96 85 80 81 81 82 132 149	- - - - - - - - - - - - - - - - - - -
(13C5-PFHxA) Isotopically Labelled Internal Recovery (13C4-PFHpA) Isotopically Labelled Internal Recovery (13C4_PFOA) Isotopically Labelled Internal Recovery (13C9-PFNA) Isotopically Labelled Internal Recovery (13C6-PFDA) Isotopically Labelled Internal Recovery (13C7-PFUdA) Isotopically Labelled Internal Recovery (13C2_PFTeDA) Isotopically Labelled Internal Recovery (13C2_PFTeDA) Isotopically Labelled Internal Recovery (13C2_PFTeDA) Isotopically Labelled Internal Recovery (13C2_PFTeDA) Isotopically Labelled Internal Recovery (13C3_PFHxDA) Isotopically Labelled Internal Recovery (13C3-PFBS) Isotopically Labelled Internal Recovery (13C3-PFHxS) Isotopically Labelled Internal Recovery	% % % % % % %		- - - - - - - - - - - - - - - - - - -	102 104 96 95 83 117 111 86 73 43 43 26 99 103	99 100 150 141 93 96 85 80 81 82 132 132 149 90	- - - - - - - - - - - - - - - - - - -
(13C5-PFHxA) Isotopically Labelled Internal Recovery (13C4-PFHpA) Isotopically Labelled Internal Recovery (13C4_PFOA) Isotopically Labelled Internal Recovery (13C9-PFNA) Isotopically Labelled Internal Recovery (13C6-PFDA) Isotopically Labelled Internal Recovery (13C7-PFUdA) Isotopically Labelled Internal Recovery (13C2-PFDoA) Isotopically Labelled Internal Recovery (13C2_PFTeDA) Isotopically Labelled Internal Recovery (13C2_PFTeDA) Isotopically Labelled Internal Recovery (13C3_PFTADA) Isotopically Labelled Internal Recovery (13C3-PFBS) Isotopically Labelled Internal Recovery (13C3-PFBS) Isotopically Labelled Internal Recovery (13C3-PFHxS) Isotopically Labelled Internal Recovery (13C3-PFHxS) Isotopically Labelled Internal Recovery (13C8-PFOS) Isotopically Labelled Internal Recovery	% % % % % % % % % % % % % % % % % % % %		- - - - - - - - - - - - - - - - - - -	102 104 96 95 83 1117 111 86 73 43 43 26 99 103 84	99 100 150 141 93 96 85 80 81 81 82 132 149 90 81	- - - - - - - - - - - - - - - - - - -
(13C5-PFHxA) Isotopically Labelled Internal Recovery (13C4-PFHpA) Isotopically Labelled Internal Recovery (13C4_PFOA) Isotopically Labelled Internal Recovery (13C9-PFNA) Isotopically Labelled Internal Recovery (13C6-PFDA) Isotopically Labelled Internal Recovery (13C7-PFUdA) Isotopically Labelled Internal Recovery (13C2-PFDoA) Isotopically Labelled Internal Recovery (13C2_PFTeDA) Isotopically Labelled Internal Recovery (13C2_PFTeDA) Isotopically Labelled Internal Recovery (13C3-PFHxDA) Isotopically Labelled Internal Recovery (13C3-PFBS) Isotopically Labelled Internal Recovery (13C3-PFBS) Isotopically Labelled Internal Recovery (13C3-PFHxS) Isotopically Labelled Internal Recovery (13C3-PFHxS) Isotopically Labelled Internal Recovery (13C3-PFFOS) Isotopically Labelled Internal Recovery (13C3-PFTS) Isotopically Labelled Internal Recovery (13C3-PFTS) Isotopically Labelled Internal Recovery (13C3-PFTS) Isotopically Labelled Internal Recovery	% %		- - - - - - - - - - - - - - - - - - -	102 104 96 95 83 1117 111 86 73 43 26 99 103 84 85	99 100 150 141 93 96 85 80 81 82 132 149 90 81 132	- - - - - - - - - - - - - - - - - - -
(13C5-PFHxA) Isotopically Labelled Internal Recovery (13C4-PFHpA) Isotopically Labelled Internal Recovery (13C4_PFOA) Isotopically Labelled Internal Recovery (13C9-PFNA) Isotopically Labelled Internal Recovery (13C7-PFUdA) Isotopically Labelled Internal Recovery (13C2-PFDoA) Isotopically Labelled Internal Recovery (13C2_PFTeDA) Isotopically Labelled Internal Recovery (13C2_PFTeDA) Isotopically Labelled Internal Recovery (13C2_PFTeDA) Isotopically Labelled Internal Recovery (13C3_PFTeDA) Isotopically Labelled Internal Recovery (13C3_PFBS) Isotopically Labelled Internal Recovery (13C3_PFBS) Isotopically Labelled Internal Recovery (13C3_PFFXS) Isotopically Labelled Internal Recovery (13C3_PFTAS) Isotopically Labelled Internal Recovery (13C3_PFTS) Isotopically Labelled Internal Recovery	% %		- - - - - - - - - - - - - - - - - - -	102 104 96 95 83 1117 111 86 73 43 26 99 103 84 85 81	99 100 150 141 93 96 85 80 81 82 132 149 90 81 132 104	- - - - - - - - - - - - - - - - - - -
(13C5-PFHxA) Isotopically Labelled Internal Recovery (13C4-PFHpA) Isotopically Labelled Internal Recovery (13C4_PFOA) Isotopically Labelled Internal Recovery (13C9-PFNA) Isotopically Labelled Internal Recovery (13C6-PFDA) Isotopically Labelled Internal Recovery (13C7-PFUdA) Isotopically Labelled Internal Recovery (13C2-PFDoA) Isotopically Labelled Internal Recovery (13C2_PFTeDA) Isotopically Labelled Internal Recovery (13C2_PFTeDA) Isotopically Labelled Internal Recovery (13C3-PFHxDA) Isotopically Labelled Internal Recovery (13C3-PFBS) Isotopically Labelled Internal Recovery (13C3-PFBS) Isotopically Labelled Internal Recovery (13C3-PFBS) Isotopically Labelled Internal Recovery (13C3-PFHxS) Isotopically Labelled Internal Recovery (13C3-PFTeDS) Isotopically Labelled Internal Recovery (13C3-PFTS) Isotopically Labelled Internal Recovery (13C2-4:2 FTS) Isotopically Labelled Internal Recovery (13C2-6:2 FTS) Isotopically Labelled Internal Recovery (13C2-8:2 FTS) Isotopically Labelled Internal Recovery	% %		- - - - - - - - - - - - - - - - - - -	102 104 96 95 83 1117 111 86 73 43 26 99 103 84 85 81 77	99 100 150 141 93 96 85 80 81 82 132 149 90 81 132 104 76	
(13C5-PFHxA) Isotopically Labelled Internal Recovery (13C4-PFHpA) Isotopically Labelled Internal Recovery (13C4_PFOA) Isotopically Labelled Internal Recovery (13C9-PFNA) Isotopically Labelled Internal Recovery (13C6-PFDA) Isotopically Labelled Internal Recovery (13C2-PFDA) Isotopically Labelled Internal Recovery (13C2_PFTeDA) Isotopically Labelled Internal Recovery (13C2_PFTeDA) Isotopically Labelled Internal Recovery (13C2_PFTeDA) Isotopically Labelled Internal Recovery (13C3_PFTeDA) Isotopically Labelled Internal Recovery (13C3_PFTeDA) Isotopically Labelled Internal Recovery (13C3_PFBS) Isotopically Labelled Internal Recovery (13C3_PFTAS) Isotopically Labelled Internal Recovery (13C3_PFTAS) Isotopically Labelled Internal Recovery (13C4-2 FTS) Isotopically Labelled Internal Recovery (13C2-4:2 FTS) Isotopically Labelled Internal Recovery (13C2-8:2 FTS) Isotopically Labelled Internal Recovery (13C4-9:2 FTS) Isotopically Labelled Internal Recovery (13C2-8:2 FTS) Isotopically Labelled Internal Recovery	% %		- - - - - - - - - - - - - - - - - - -	102 104 96 95 83 117 111 86 73 43 26 99 103 84 85 81 77 71	99 100 150 141 93 96 85 80 81 132 149 90 81 132 104 76 61	
(13C5-PFHxA) Isotopically Labelled Internal Recovery (13C4-PFHpA) Isotopically Labelled Internal Recovery (13C4_PFOA) Isotopically Labelled Internal Recovery (13C9-PFNA) Isotopically Labelled Internal Recovery (13C6-PFDA) Isotopically Labelled Internal Recovery (13C2-PFDA) Isotopically Labelled Internal Recovery (13C2_PFTeDA) Isotopically Labelled Internal Recovery (13C2_PFTeDA) Isotopically Labelled Internal Recovery (13C2_PFTeDA) Isotopically Labelled Internal Recovery (13C2_PFTeDA) Isotopically Labelled Internal Recovery (13C3_PFBS) Isotopically Labelled Internal Recovery (13C3_PFBS) Isotopically Labelled Internal Recovery (13C3_PFHxS) Isotopically Labelled Internal Recovery (13C3_PFTeS) Isotopically Labelled Internal Recovery (13C2-FTS) Isotopically Labelled Internal Recovery (13C3-PFOSA) Isotopically Labelled Internal Recovery (13C3-PFOSA) Isotopically Labelled Internal Recovery (13C3-PFOSA) Isotopically Labelled Internal Recovery	% %			102 104 96 95 83 117 111 86 73 43 26 99 103 84 85 81 77 71 71 52	99 100 150 141 93 96 85 80 81 132 149 90 81 132 104 76 61 41	
(13C5-PFHxA) Isotopically Labelled Internal Recovery (13C4-PFHpA) Isotopically Labelled Internal Recovery (13C4_PFOA) Isotopically Labelled Internal Recovery (13C4_PFOA) Isotopically Labelled Internal Recovery (13C5-PFNA) Isotopically Labelled Internal Recovery (13C6-PFDA) Isotopically Labelled Internal Recovery (13C2-PFDA) Isotopically Labelled Internal Recovery (13C2_PFTeDA) Isotopically Labelled Internal Recovery (13C2_PFTeDA) Isotopically Labelled Internal Recovery (13C3_PFBS) Isotopically Labelled Internal Recovery (13C3_PFBS) Isotopically Labelled Internal Recovery (13C3_PFBS) Isotopically Labelled Internal Recovery (13C3_PFFS) Isotopically Labelled Internal Recovery (13C3_PFFS) Isotopically Labelled Internal Recovery (13C3_PFFS) Isotopically Labelled Internal Recovery (13C4_PFOS) Isotopically Labelled Internal Recovery (13C2-FCS) Isotopically Labelled Internal Recovery (13C2-F2 FTS) Isotopically Labelled Internal Recovery (13C3-PFOSA) Isotopically Labelled Internal Recovery (13C4-PFOSA) Isotopically Labelled Internal Recovery (13C3-PFOSA) Isotopica	% %		- - - - - - - - - - - - - - - - - - -	102 104 96 95 83 117 111 86 73 43 26 99 103 84 85 81 77 71 52 43	99 100 150 141 93 96 85 80 81 132 104 76 61 41 38	
(13C5-PFHxA) Isotopically Labelled Internal Recovery (13C4-PFHpA) Isotopically Labelled Internal Recovery (13C4_PFOA) Isotopically Labelled Internal Recovery (13C4_PFOA) Isotopically Labelled Internal Recovery (13C6-PFDA) Isotopically Labelled Internal Recovery (13C6-PFDA) Isotopically Labelled Internal Recovery (13C2-PFDA) Isotopically Labelled Internal Recovery (13C2_PFTeDA) Isotopically Labelled Internal Recovery (13C2_PFTeDA) Isotopically Labelled Internal Recovery (13C3_PFBS) Isotopically Labelled Internal Recovery (13C3_PFBS) Isotopically Labelled Internal Recovery (13C3_PFHxS) Isotopically Labelled Internal Recovery (13C3_PFFS) Isotopically Labelled Internal Recovery (13C3_PFFS) Isotopically Labelled Internal Recovery (13C3_PFFS) Isotopically Labelled Internal Recovery (13C4_PFOS) Isotopically Labelled Internal Recovery (13C4_PFOS) Isotopically Labelled Internal Recovery (13C2_FFS) Isotopically Labelled Internal Recovery (13C2_PFOSA) Isotopically	% %			102 104 96 95 83 117 111 86 73 43 26 99 103 84 85 81 77 71 52 43 85	99 100 150 141 93 96 85 80 81 132 104 76 61 41 38 62	
(13C5-PFHxA) Isotopically Labelled Internal Recovery (13C4-PFHpA) Isotopically Labelled Internal Recovery (13C4_PFOA) Isotopically Labelled Internal Recovery (13C9-PFNA) Isotopically Labelled Internal Recovery (13C6-PFDA) Isotopically Labelled Internal Recovery (13C2-PFDA) Isotopically Labelled Internal Recovery (13C2-PFDA) Isotopically Labelled Internal Recovery (13C2_PFTeDA) Isotopically Labelled Internal Recovery (13C2_PFTeDA) Isotopically Labelled Internal Recovery (13C3_PFBS) Isotopically Labelled Internal Recovery (13C3_PFBS) Isotopically Labelled Internal Recovery (13C3_PFHxDA) Isotopically Labelled Internal Recovery (13C3_PFHxS) Isotopically Labelled Internal Recovery (13C3_PFHxS) Isotopically Labelled Internal Recovery (13C4-2FTS) Isotopically Labelled Internal Recovery (13C2-6:2 FTS) Isotopically Labelled Internal Recovery (13C2-6:2 FTS) Isotopically Labelled Internal Recovery (13C4-9FOSA) Isotopically Labelled Internal Recovery (13C4-PFOSA) Isotopically Labelled Internal Recovery (D3-N-MeFOSA) Isotopically Labelled Internal Recovery (D5-N-EtFOSA) Isotopically Labelled Internal Recovery (D5-N-EtFOSA) Isotopically Labelled Internal Recovery (D7-N-MeFOSE) Isotopically Labelled Internal Recovery (D7-N-MeFOSE) Isotopically Labelled Internal Recovery	% %			102 104 96 95 83 117 111 86 73 43 26 99 103 84 85 81 77 71 52 43 63	99 100 150 141 93 96 85 80 81 132 149 90 81 132 104 76 61 41 38 62	
(13C5-PFHxA) Isotopically Labelled Internal Recovery (13C4-PFHpA) Isotopically Labelled Internal Recovery (13C4-PFOA) Isotopically Labelled Internal Recovery (13C4-PFNA) Isotopically Labelled Internal Recovery (13C4-PFNA) Isotopically Labelled Internal Recovery (13C5-PFNA) Isotopically Labelled Internal Recovery (13C6-PFDA) Isotopically Labelled Internal Recovery (13C2-PFDA) Isotopically Labelled Internal Recovery (13C2-PFTeDA) Isotopically Labelled Internal Recovery (13C2-PFTeDA) Isotopically Labelled Internal Recovery (13C3-PFBS) Isotopically Labelled Internal Recovery (13C3-PFBS) Isotopically Labelled Internal Recovery (13C3-PFNS) Isotopically Labelled Internal Recovery (13C3-PFNS) Isotopically Labelled Internal Recovery (13C3-PFNS) Isotopically Labelled Internal Recovery (13C2-4:2 FTS) Isotopically Labelled Internal Recovery (13C2-4:2 FTS) Isotopically Labelled Internal Recovery (13C2-8:2 FTS) Isotopically Labelled Internal Recovery (13C2-8:2 FTS) Isotopically Labelled Internal Recovery (13C2-8:2 FTS) Isotopically Labelled Internal Recovery (13C3-9:5 FTS) Isotopically Labelled Internal Recovery (13C3-9:5 Isotopically Labelled Internal Recovery (13C3-9:5 Isotopically Labelled Internal Recovery (13C3-9:5 Isotopi	% %		- - - - - - - - - - - - - - - - - - -	102 104 96 95 83 1117 1111 86 73 43 26 99 103 84 85 81 77 71 52 43 55 63 55	99 100 150 141 93 96 85 80 81 32 149 90 81 132 104 76 61 41 38 62 62 50	

Parameter	San Si Si S Units	nple Number ample Matrix Sample Date ample Name LOR	ME334472.017 Soil 23 May 2023 SE248198.017	ME334472.018 Soil 23 May 2023 SE248198.018	ME334472.019 Soil 23 May 2023 SE248198.019	ME334472.020 Soil 23 May 2023 SE248198.020
Moisture Content Method: AN002 Tested: 5/6/2023	}					
% Moisture	%w/w	1	-	15.1	15.0	-

		Sample Number	ME334472.021	ME334472.022	ME334472.023	ME334472.024
		Sample Matrix	Soil	Soil	Soil	Water
		Sample Date	23 May 2023	23 May 2023	23 May 2023	23 May 2023
		Sample Name	SE248198.021	SE248198.022	SE248198.023	SE248198.024
Parameter	Units	LOR				
Per and Palufluercellui Substances (PEAS) in Salid S	onts Mathed		ted. 5/0/2022			
rei- and Folyndoroalkyr Substances (FFAS) in Sond Sa	amples wethou	I. MA-1525 Tes	steu. 5/6/2025			
Perfluorobutanoic acid (PFBA)	mg/kg	0.0016	-	-	-	-
Perfluoropentanoic acid (PFPeA)	mg/kg	0.0016	-	-	-	-
Perfluorohexanoic acid (PFHxA)	mg/kg	0.0016	-	-	-	-
Perfluoroheptanoic acid (PFHpA)	mg/kg	0.0016	-	-	-	-
Perfluorooctanoic Acid (PFOA)	mg/kg	0.0008	-	-	-	-
Perfluorononanoic acid (PFNA)	mg/kg	0.0016	-	-	-	-
Perfluorodecanoic acid (PFDA)	mg/kg	0.0016	-	-	-	-
Perfluoroundecanoic acid (PFUnA)	ma/ka	0.0016	_	-	-	_
Perfluorododecanoic acid (PFDoA)	ma/ka	0.0016	-	-	-	-
Perfluorotridecanoic acid (PFTrDA)	ma/ka	0.0016	-	_	-	_
Perfluorotetradecapoic acid (PETeDA)	mg/kg	0.0016	_	_	_	_
	mg/kg	0.0032				
	mg/kg	0.0032	-	-	-	_
	mg/kg	0.0016	-	-	-	-
Perfusion perfusion and (PEPPES)	mg/kg	0.0010	-	-	-	-
Perfuorohexane sultonate (PFHxS)	mg/kg	0.0016	-	-	-	-
Perfluoroheptane sulfonate (PFHpS)	mg/kg	0.0016	-	-	-	-
Perfluorooctane sulfonate (PFOS)	mg/kg	0.0016	-	-	-	-
Sum PFOS and PFHXS	mg/kg	0.0016	-	-	-	-
Sum of US EPA PFAS (PFOS+PFOA)	mg/kg	0.0016	-	-	-	-
Sum of enHealth PFAS (PFHxS+PFOS+PFOA)	mg/kg	0.0016	-	-	-	-
Perfluorononane sulfonate (PFNS)	mg/kg	0.0016	-	-	-	-
Perfluorodecane sulfonate (PFDS)	mg/kg	0.0016	-	-	-	-
Perfluorododecane sulfonate (PFDoS)	mg/kg	0.0016	-	-	-	-
1H,1H,2H,2H-Perfluorohexane sulfonate (4:2) (4:2 FTS)	mg/kg	0.0016	-	-	-	-
1H,1H,2H,2H-Perfluorooctane sulfonate (6:2) (6:2 FTS)	mg/kg	0.0016	-	-	-	-
1H,1H,2H,2H-Perfluorodecane sulfonate (8:2) (8:2 FTS)	mg/kg	0.0016	-	-	-	-
Perfluoroctane sulfonamide (PFOSA)	mg/kg	0.0016	-	-	-	-
N-Methylperfluoroctane sulfonamide (N-MeFOSA)	mg/kg	0.008	-	-	-	-
N-Ethylperfluoroctane sulfonamide (N-EtFOSA)	mg/kg	0.008	-	-	-	-
2-(N-Methylperfluorooctane sulfonamido)-ethanol	mg/kg	0.016	-	-	-	-
2-(N-Ethylperfluorooctane sulfonamido)-ethanol	mg/kg	0.016	-	-	-	-
N-Methylperfluorooctanesulfonamidoacetic acid	ma/ka	0.008	_	-	-	-
N-Ethylperfluorooctanesulfonamidoacetic Acid	ma/ka	0.008	-	_	-	_
Total of PEAS (n=30)	ma/ka	0.08	-	-	-	_
(13C4-PEBA) Isotopically Labelled Internal Recovery	%			_	-	_
(13C5-PEPeA) Isotonically Labelled Internal Recovery	%			_	_	_
(13C5 PEHzA) Isotopically Labelled Internal Recovery	/6				-	_
(13C3-PFRXA) Isotopically Labelled Internal Recovery	76	-	-	-	-	-
(13C4-PFHpA) isotopically Labelled internal Recovery	%	-	-	-	-	-
(13C4_PFOA) Isotopically Labelled Internal Recovery	%	-	-	-	-	-
(13C3-PFNA) Isotopically Labelled Internal Recovery	%	-	-	-	-	-
(13C6-PFDA) Isotopically Labelled Internal Recovery	%		-	-	-	-
(13C7-PFUdA) Isotopically Labelled Internal Recovery	%	-	-	-	-	-
(13C2-PFDoA) Isotopically Labelled Internal Recovery	%	-	-	-	-	-
(13C2_PFTeDA) Isotopically Labelled Internal Recovery	%	-	-	-	-	-
(13C2-PFHxDA) Isotopically Labelled Internal Recovery	%	-	-	-	-	-
(13C3-PFBS) Isotopically Labelled Internal Recovery	%	-	-	-	-	-
(13C3-PFHxS) Isotopically Labelled Internal Recovery	%	-	-	-	-	-
(13C8-PFOS) Isotopically Labelled Internal Recovery	%	-	-	-	-	-
(13C2-4:2 FTS) Isotopically Labelled Internal Recovery	%	-	-	-	-	-
(13C2-6:2 FTS) Isotopically Labelled Internal Recovery	%	-	-	-	-	-
(13C2-8:2 FTS) Isotopically Labelled Internal Recovery	%	-	-	-	-	-
(13C8-PFOSA) Isotopically Labelled Internal Recovery	%	-	-	-	-	-
(D3-N-MeFOSA) Isotopically Labelled Internal Recovery	%	-	-	-	-	-
(D5-N-EtFOSA) Isotopically Labelled Internal Recoverv	%	_	-	_	-	_
(D7-N-MeFOSE) Isotopically Labelled Internal Recovery	%		-	_	_	
(D9-N-EtFOSE) Isotopically Labelled Internal Recovery	%			_	_	
(D3-N-MeFOSAA) Isotopically Labelled Internal Recovery	%		_	_	_	
(D5-N-EtFOSAA) Isotopically Labelled Internal Recovery	%		_	_	_	_

Parameter	Sar S S Units	nple Number ample Matrix Sample Date Sample Name LOR	ME334472.021 Soil 23 May 2023 SE248198.021	ME334472.022 Soil 23 May 2023 SE248198.022	ME334472.023 Soil 23 May 2023 SE248198.023	ME334472.024 Water 23 May 2023 SE248198.024
Moisture Content Method: AN002 Tested: 5/6/2023	i					
% Moisture	%w/w	1	-	-	-	-

	Sa	mple Number	ME334472.025
	:	Sample Matrix Sample Date	Soii 23 May 2023
		Sample Name	SE248198.025
Parameter	Units	LOR	
Per- and Polyfluoroalkyl Substances (PFAS) in Solid Sa	amples Method: M	А-1523 Те	sted: 5/6/2023
Perfluorobutanoic acid (PFBA)	mg/kg	0.0016	-
Perfluoropentanoic acid (PFPeA)	mg/kg	0.0016	-
Perfluorohexanoic acid (PFHxA)	mg/kg	0.0016	-
Perfluoroheptanoic acid (PFHpA)	mg/kg	0.0016	-
Perfluorooctanoic Acid (PFOA)	mg/kg	0.0008	-
Perfluorononanoic acid (PFNA)	mg/kg	0.0016	-
Perfluorodecanoic acid (PFDA)	mg/kg	0.0016	-
Perfluoroundecanoic acid (PFUnA)	mg/kg	0.0016	-
Perfluorododecanoic acid (PFDoA)	mg/kg	0.0016	-
Perfluorotridecanoic acid (PFTrDA)	mg/kg	0.0016	-
Perfluorotetradecanoic acid (PFTeDA)	mg/kg	0.0016	-
Perfluorohexadecanoic acid (PFHxDA)	mg/kg	0.0032	-
Perfluorobutane sulfonate (PFBS)	mg/kg	0.0016	-
Perfluoropentane sulfonate (PFPeS)	mg/kg	0.0016	-
Perfluorohexane sulfonate (PFHxS)	mg/kg	0.0016	-
Perfluoroheptane sulfonate (PFHpS)	mg/kg	0.0016	-
Perfluorooctane sulfonate (PFOS)	mg/kg	0.0016	-
Sum PFOS and PFHXS	mg/kg	0.0016	-
Sum of US EPA PFAS (PFOS+PFOA)	mg/kg	0.0016	-
Sum of enHealth PFAS (PFHxS+PFOS+PFOA)	mg/kg	0.0016	-
Perfluorononane sulfonate (PFNS)	mg/kg	0.0016	-
Perfluorodecane sulfonate (PFDS)	mg/kg	0.0016	-
Perfluorododecane sulfonate (PFDoS)	mg/kg	0.0016	-
1H,1H,2H,2H-Perfluorohexane sulfonate (4:2) (4:2 FTS)	mg/kg	0.0016	-
1H,1H,2H,2H-Perfluorooctane sulfonate (6:2) (6:2 FTS)	mg/kg	0.0016	-
1H,1H,2H,2H-Perfluorodecane sulfonate (8:2) (8:2 FTS)	mg/kg	0.0016	-
Perfluoroctane sulfonamide (PFOSA)	mg/kg	0.0016	-
N-Methylperfluoroctane sulfonamide (N-MeFOSA)	mg/kg	0.008	-
N-Ethylperfluoroctane sulfonamide (N-EtFOSA)	mg/kg	0.008	-
2-(N-Methylperfluorooctane sulfonamido)-ethanol	mg/kg	0.016	-
2-(N-Ethylperfluorooctane sulfonamido)-ethanol	mg/kg	0.016	-
N-Methylperfluorooctanesulfonamidoacetic acid	mg/kg	0.008	-
N-Ethylperfluorooctanesulfonamidoacetic Acid	mg/kg	0.008	-
Total of PFAS (n=30)	mg/kg	0.08	-
(13C4-PFBA) Isotopically Labelled Internal Recovery	%	-	-
(13C5-PFPeA) Isotopically Labelled Internal Recovery	%	-	-
(13C5-PFHxA) Isotopically Labelled Internal Recovery	%	-	-
(13C4-PFHpA) Isotopically Labelled Internal Recovery	%	-	-
(13C4_PFOA) Isotopically Labelled Internal Recovery	%	-	-
(13C9-PFNA) Isotopically Labelled Internal Recovery	%	-	-
(13C6-PFDA) Isotopically Labelled Internal Recovery	%	-	-
(13C7-PFUdA) Isotopically Labelled Internal Recovery	%	-	-
(13C2-PFDoA) Isotopically Labelled Internal Recovery	%	-	-
(13C2_PFTeDA) Isotopically Labelled Internal Recovery	%	-	-
(13C2-PFHxDA) Isotopically Labelled Internal Recovery	%	-	-
(13C3-PFBS) Isotopically Labelled Internal Recovery	%	-	-
(13C3-PFHxS) Isotopically Labelled Internal Recovery	%	-	-
(13C8-PFOS) Isotopically Labelled Internal Recovery	%	-	-
(13C2-4:2 FTS) Isotopically Labelled Internal Recovery	%	-	-
(13C2-6:2 FTS) Isotopically Labelled Internal Recovery	%	-	-
(13C2-8:2 FTS) Isotopically Labelled Internal Recovery	%	-	-
(13C8-PFOSA) Isotopically Labelled Internal Recovery	%	-	-
(D3-N-MeFOSA) Isotopically Labelled Internal Recovery	%	-	-
(D5-N-EtFOSA) Isotopically Labelled Internal Recovery	%	-	-
(D7-N-MeFOSE) Isotopically Labelled Internal Recovery	%	-	-
(D9-N-EtFOSE) Isotopically Labelled Internal Recovery	%	-	-
(D3-N-MeFOSAA) Isotopically Labelled Internal Recovery	%	-	-
(D5-N-EtFOSAA) Isotopically Labelled Internal Recovery	%	-	-

	San Sa Sa Sa	nple Number ample Matrix Sample Date ample Name	r ME334472.025 Soil 23 May 2023 SE248198.025
Parameter	Units	LOR	
Moisture Content Method: AN002 Tested: 5/6/2023			
% Moisture	%w/w	1	-

MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula : the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

Per- and Polyfluoroalkyl Substances (PFAS) in Solid Samples Method: MA-1523

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS
Perfluorobutanoic acid (PEBA)	Reference	ma/ka	0.0016	<0.0016	0%	%Recovery NA
Perfluoropentanoic acid (PEPeA)	LB062407	ma/ka	0.0016	<0.0016	0%	NA
Perfluorohexanoic acid (PFHxA)	LB062407	ma/ka	0.0016	<0.0016	0%	NA
Perfluoroheptanoic acid (PFHpA)	LB062407	ma/ka	0.0016	<0.0016	0%	121%
Perfluorooctanoic Acid (PFOA)	LB062407	ma/ka	0.0008	<0.0008	0%	127%
Perfluorononanoic acid (PFNA)	LB062407	mg/kg	0.0016	<0.0016		150%
Perfluorodecanoic acid (PFDA)	LB062407	mg/kg	0.0016	<0.0016		104%
Perfluoroundecanoic acid (PFUnA)	LB062407	mg/kg	0.0016	<0.0016		117%
Perfluorododecanoic acid (PFDoA)	LB062407	ma/ka	0.0016	<0.0016		147%
Perfluorotridecanoic acid (PFTrDA)	LB062407	mg/kg	0.0016	<0.0016		105%
Perfluorotetradecanoic acid (PFTeDA)	LB062407	mg/kg	0.0016	<0.0016		NA
Perfluorohexadecanoic acid (PFHxDA)	LB062407	mg/kg	0.0032	<0.0032		NA
Perfluorobutane sulfonate (PFBS)	LB062407	mg/kg	0.0016	<0.0016	0%	NA
Perfluoropentane sulfonate (PFPeS)	LB062407	mg/kg	0.0016	<0.0016	0%	NA
Perfluorohexane sulfonate (PFHxS)	LB062407	mg/kg	0.0016	<0.0016	0%	NA
Perfluoroheptane sulfonate (PFHpS)	LB062407	mg/kg	0.0016	<0.0016	0%	NA
Perfluorooctane sulfonate (PFOS)	LB062407	mg/kg	0.0016	<0.0016	26%	150%
Sum PFOS and PFHXS	LB062407	mg/kg	0.0016	<0.0016	26%	NA
Sum of US EPA PFAS (PFOS+PFOA)	LB062407	mg/kg	0.0016	<0.0016		NA
Sum of enHealth PFAS (PFHxS+PFOS+PFOA)	LB062407	mg/kg	0.0016	<0.0016		NA
Perfluorononane sulfonate (PFNS)	LB062407	mg/kg	0.0016	<0.0016	0%	NA
Perfluorodecane sulfonate (PFDS)	LB062407	mg/kg	0.0016	<0.0016		NA
Perfluorododecane sulfonate (PFDoS)	LB062407	mg/kg	0.0016	<0.0016		NA
1H,1H,2H,2H-Perfluorohexane sulfonate (4:2) (4:2 FTS)	LB062407	mg/kg	0.0016	<0.0016	0%	NA
1H,1H,2H,2H-Perfluorooctane sulfonate (6:2) (6:2 FTS)	LB062407	mg/kg	0.0016	<0.0016	0%	NA
1H,1H,2H,2H-Perfluorodecane sulfonate (8:2) (8:2 FTS)	LB062407	mg/kg	0.0016	<0.0016	0%	NA
Perfluoroctane sulfonamide (PFOSA)	LB062407	mg/kg	0.0016	<0.0016		70%
N-Methylperfluoroctane sulfonamide (N-MeFOSA)	LB062407	mg/kg	0.008	<0.008		NA
N-Ethylperfluoroctane sulfonamide (N-EtFOSA)	LB062407	mg/kg	0.008	<0.008		NA
2-(N-Methylperfluorooctane sulfonamido)-ethanol (N-MeFOSE)	LB062407	mg/kg	0.016	<0.016		NA
2-(N-Ethylperfluorooctane sulfonamido)-ethanol (N-EtFOSE)	LB062407	mg/kg	0.016	<0.016		NA
N-Methylperfluorooctanesulfonamidoacetic acid (N_MeFOSAA)	LB062407	mg/kg	0.008	<0.008		NA
N-Ethylperfluorooctanesulfonamidoacetic Acid (N-EtFOSAA)	LB062407	mg/kg	0.008	<0.008		NA
Total of PFAS (n=30)	LB062407	mg/kg	0.08	<0.08		NA
(13C4-PFBA) Isotopically Labelled Internal Recovery Standard	LB062407	%	-	102%	0%	99%
(13C5-PFPeA) Isotopically Labelled Internal Recovery Standard	LB062407	%	-	100%	1%	97%
(13C5-PFHxA) Isotopically Labelled Internal Recovery Standard	LB062407	%	-	95%	7%	112%
(13C4-PFHpA) Isotopically Labelled Internal Recovery Standard	LB062407	%	-	96%	4%	105%
(13C4_PFOA) Isotopically Labelled Internal Recovery Standard	LB062407	%	-	95%	2%	97%
(13C9-PFNA) Isotopically Labelled Internal Recovery Standard	LB062407	%	-	97%		106%
(13C6-PFDA) Isotopically Labelled Internal Recovery Standard	LB062407	%	-	130%		127%
(13C7-PFUdA) Isotopically Labelled Internal Recovery Standard	LB062407	%	-	100%		99%
(13C2-PFDoA) Isotopically Labelled Internal Recovery Standard	LB062407	%	-	98%		91%
(13C2_PFTeDA) Isotopically Labelled Internal Recovery Standard	LB062407	%	-	75%		70%
(13C2-PFHxDA) Isotopically Labelled Internal Recovery Standard	LB062407	%	-	31%		39%
(13C3-PFBS) Isotopically Labelled Internal Recovery Standard	LB062407	%	-	111%	22%	107%
(13C3-PFHxS) Isotopically Labelled Internal Recovery Standard	LB062407	%	-	119%	4%	103%
(13C8-PFOS) Isotopically Labelled Internal Recovery Standard	LB062407	%	-	85%	15%	119%
(13C2-4:2 FTS) Isotopically Labelled Internal Recovery Standard	LB062407	%	-	107%		108%
(13C2-6:2 FTS) Isotopically Labelled Internal Recovery Standard	LB062407	%	-	109%		95%
(13C2-8:2 FTS) Isotopically Labelled Internal Recovery Standard	LB062407	%	-	105%		83%
(13C8-PFOSA) Isotopically Labelled Internal Recovery Standard	LB062407	%	-	102%		132%
(D3-N-MeFOSA) Isotopically Labelled Internal Recovery Standard	LB062407	%	-	73%		25%
(D5-N-EtFOSA) Isotopically Labelled Internal Recovery Standard	LB062407	%	-	55%		20%
(D7-N-MeFOSE) Isotopically Labelled Internal Recovery Standard	LB062407	%	-	101%		129%
(D9-N-EtFOSE) Isotopically Labelled Internal Recovery Standard	LB062407	%	-	99%		88%

MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula : the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

Per- and Polyfluoroalkyl Substances (PFAS) in Solid Samples Method: MA-1523 (continued)

				MB	DUP %RPD	LCS	
						%Recovery	
(D3-N-MeFOSAA) Isotopically Labelled Internal Recovery Standard	LB062407	%	-	87%		113%	
(D5-N-EtFOSAA) Isotopically Labelled Internal Recovery Standard	LB062407	%	-	78%		95%	

METHOD SUMMARY

METHOD	METHODOLOGY SUMMARY
AN002	The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.
MA-1523	This method covers the analysis of per- and polyfluoroalkyl substances (PFAS) in aqueous, solid and biosolid samples and solvent extracts, determined as the total of linear and branched isomers. After spiking with isotopically labelled quantification surrogates and clean-up via SPE cartridges sample extracts are analysed by liquid chromatography/mass spectrometry (LC-MS/MS). PFAS concentrations are determined by isotope dilution quantification.

FOOTNOTES .

IS Insufficient sample for analysis. LOR Limit of Reporting LNR Sample listed, but not received. Raised or Lowered Limit of Reporting î↓ NATA accreditation does not cover the QFH QC result is above the upper tolerance performance of this service QFL QC result is below the lower tolerance ++ Indicative data, theoretical holding time exceeded. The sample was not analysed for this analyte *** Indicates that both * and ** apply. NVI Not Validated

Unless it is reported that sampling has been performed by SGS, the samples have been analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calcuated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC and MU criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: <u>www.sgs.com.au/en-gb/environment-health-and-safety</u>.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This report must not be reproduced, except in full.

CERTIFICATE OF ANALYSIS 324762

Client Details	
Client	El Australia
Attention	Andrew Schmidt
Address	Suite 6.01, 55 Miller Street, Pyrmont, NSW, 2009

Sample Details	
Your Reference	E25996, Concord Hospital, Concord
Number of Samples	1 Water
Date samples received	02/06/2023
Date completed instructions received	02/06/2023

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details						
Date results requested by	09/06/2023					
Date of Issue	08/06/2023					
NATA Accreditation Number 2901. This document shall not be reproduced except in full.						
Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *						

Results Approved By Dragana Tomas, Senior Chemist Hannah Nguyen, Metals Supervisor Liam Timmins, Organics Supervisor <u>Authorised By</u> Nancy Zhang, Laboratory Manager

vTRH(C6-C10)/BTEXN in Water		
Our Reference		324762-1
Your Reference	UNITS	GW-QT1
Date Sampled		01/06/2023
Type of sample		Water
Date extracted	-	05/06/2023
Date analysed	-	06/06/2023
TRH C ₆ - C ₉	μg/L	47
TRH C ₆ - C ₁₀	µg/L	65
TRH C ₆ - C ₁₀ less BTEX (F1)	µg/L	65
Benzene	µg/L	<1
Toluene	μg/L	<1
Ethylbenzene	µg/L	<1
m+p-xylene	μg/L	<2
o-xylene	µg/L	<1
Naphthalene	μg/L	<1
Surrogate Dibromofluoromethane	%	100
Surrogate toluene-d8	%	93
Surrogate 4-BFB	%	96

svTRH (C10-C40) in Water		
Our Reference		324762-1
Your Reference	UNITS	GW-QT1
Date Sampled		01/06/2023
Type of sample		Water
Date extracted	-	05/06/2023
Date analysed	-	06/06/2023
TRH C ₁₀ - C ₁₄	μg/L	<50
TRH C ₁₅ - C ₂₈	µg/L	<100
TRH C ₂₉ - C ₃₆	μg/L	<100
Total +ve TRH (C10-C36)	µg/L	<50
TRH >C10 - C16	µg/L	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	µg/L	<50
TRH >C ₁₆ - C ₃₄	µg/L	<100
TRH >C ₃₄ - C ₄₀	µg/L	<100
Total +ve TRH (>C10-C40)	µg/L	<50
Surrogate o-Terphenyl	%	85

HM in water - dissolved		
Our Reference		324762-1
Your Reference	UNITS	GW-QT1
Date Sampled		01/06/2023
Type of sample		Water
Date prepared	-	07/06/2023
Date analysed	-	07/06/2023
Arsenic-Dissolved	µg/L	<1
Cadmium-Dissolved	µg/L	0.1
Chromium-Dissolved	µg/L	<1
Copper-Dissolved	µg/L	3
Lead-Dissolved	µg/L	<1
Mercury-Dissolved	µg/L	<0.05
Nickel-Dissolved	µg/L	9
Zinc-Dissolved	µg/L	48

Method ID	Methodology Summary
Metals-021	Determination of Mercury by Cold Vapour AAS.
Metals-022	Determination of various metals by ICP-MS.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-023	Water samples are analysed directly by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.

QUALITY CONTR	QUALITY CONTROL: vTRH(C6-C10)/BTEXN in Water					Duplicate			Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W3	[NT]	
Date extracted	-			05/06/2023	[NT]			[NT]	05/06/2023		
Date analysed	-			06/06/2023	[NT]			[NT]	06/06/2023		
TRH C ₆ - C ₉	µg/L	10	Org-023	<10	[NT]			[NT]	97		
TRH C ₆ - C ₁₀	µg/L	10	Org-023	<10	[NT]			[NT]	97		
Benzene	µg/L	1	Org-023	<1	[NT]			[NT]	91		
Toluene	µg/L	1	Org-023	<1	[NT]			[NT]	93		
Ethylbenzene	µg/L	1	Org-023	<1	[NT]			[NT]	96		
m+p-xylene	µg/L	2	Org-023	<2	[NT]			[NT]	102		
o-xylene	µg/L	1	Org-023	<1	[NT]			[NT]	98		
Naphthalene	µg/L	1	Org-023	<1	[NT]			[NT]	[NT]		
Surrogate Dibromofluoromethane	%		Org-023	90	[NT]			[NT]	89		
Surrogate toluene-d8	%		Org-023	91	[NT]			[NT]	91		
Surrogate 4-BFB	%		Org-023	95	[NT]			[NT]	100		

QUALITY CON	QUALITY CONTROL: svTRH (C10-C40) in Water					Duplicate Spil			Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
Date extracted	-			05/06/2023	[NT]		[NT]	[NT]	05/06/2023	
Date analysed	-			06/06/2023	[NT]		[NT]	[NT]	06/06/2023	
TRH C ₁₀ - C ₁₄	µg/L	50	Org-020	<50	[NT]		[NT]	[NT]	101	
TRH C ₁₅ - C ₂₈	µg/L	100	Org-020	<100	[NT]		[NT]	[NT]	101	
TRH C ₂₉ - C ₃₆	µg/L	100	Org-020	<100	[NT]		[NT]	[NT]	86	
TRH >C ₁₀ - C ₁₆	µg/L	50	Org-020	<50	[NT]		[NT]	[NT]	101	
TRH >C ₁₆ - C ₃₄	µg/L	100	Org-020	<100	[NT]		[NT]	[NT]	101	
TRH >C ₃₄ - C ₄₀	µg/L	100	Org-020	<100	[NT]		[NT]	[NT]	86	
Surrogate o-Terphenyl	%		Org-020	71	[NT]	[NT]	[NT]	[NT]	91	[NT]

QUALITY CONTROL: HM in water - dissolved				Duplicate Spike Reco					covery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date prepared	-			07/06/2023	[NT]		[NT]	[NT]	07/06/2023	[NT]
Date analysed	-			07/06/2023	[NT]		[NT]	[NT]	07/06/2023	[NT]
Arsenic-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	92	[NT]
Cadmium-Dissolved	µg/L	0.1	Metals-022	<0.1	[NT]		[NT]	[NT]	93	[NT]
Chromium-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	93	[NT]
Copper-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	93	[NT]
Lead-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	97	[NT]
Mercury-Dissolved	µg/L	0.05	Metals-021	<0.05	[NT]		[NT]	[NT]	99	[NT]
Nickel-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	93	[NT]
Zinc-Dissolved	µg/L	1	Metals-022	<1	[NT]	[NT]	[NT]	[NT]	93	[NT]

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Control	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Where matrix spike recoveries fall below the lower limit of the acceptance criteria (e.g. for non-labile or standard Organics <60%), positive result(s) in the parent sample will subsequently have a higher than typical estimated uncertainty (MU estimates supplied on request) and in these circumstances the sample result is likely biased significantly low.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

CLIENT DETAILS		LABORATORY DE	TAILS
Contact	Andrew Schmidt	Manager	Huong Crawford
Client	EI AUSTRALIA	Laboratory	SGS Alexandria Environmental
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone Facsimile Email	61 2 95160722 (Not specified) andrew.schmidt@eiaustralia.com.au	Telephone Facsimile Email	+61 2 8594 0400 +61 2 8594 0499 au.environmental.sydney@sgs.com
Project Order Number Samples	E25996 Concord Hospital, Concord E25996 7	SGS Reference Date Received Date Reported	SE248514 R0 1/6/2023 8/6/2023

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

SIGNATORIES

Kamrul AHSAN Senior Chemist

Armln

Ly Kim HA Organic Section Head

SGS Australia Pty Ltd ABN 44 000 964 278

SE248514 R0

VOCs in Water [AN433] Tested: 6/6/2023

			BH1M	внэм	BH12M	GW_QD1	GW_QR1
			WATER	WATER	WATER	WATER	WATER
			1/6/2023	1/6/2023	1/6/2023	1/6/2023	1/6/2023
PARAMETER	UOM	LOR	SE248514.001	SE248514.002	SE248514.003	SE248514.004	SE248514.005
Benzene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Toluene	µg/L	0.5	0.9	6.1	<0.5	<0.5	<0.5
Ethylbenzene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
m/p-xylene	µg/L	1	<1	<1	<1	<1	<1
o-xylene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Total Xylenes	µg/L	1.5	<1.5	<1.5	<1.5	<1.5	<1.5
Total BTEX	µg/L	3	<3	6	<3	<3	<3
Naphthalene (VOC)*	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5

			GW_QTB1	GW_QTS1
			WATER	WATER
			-	-
	UOM		05040544.000	05040544.007
PARAMETER	UOM	LUK	SE248514.006	SE248514.007
Benzene	µg/L	0.5	<0.5	[98%]
Toluene	µg/L	0.5	<0.5	[99%]
Ethylbenzene	µg/L	0.5	<0.5	[99%]
m/p-xylene	µg/L	1	<1	[99%]
o-xylene	µg/L	0.5	<0.5	[99%]
Total Xylenes	µg/L	1.5	<1.5	-
Total BTEX	µg/L	3	<3	-
Naphthalene (VOC)*	µg/L	0.5	<0.5	[100%]

Volatile Petroleum Hydrocarbons in Water [AN433] Tested: 6/6/2023

			BH1M	BH9M	BH12M	GW_QD1	GW_QR1
			WATER	WATER	WATER	WATER	WATER
PARAMETER	UOM	LOR	SE248514.001	SE248514.002	SE248514.003	SE248514.004	SE248514.005
TRH C6-C9	µg/L	40	<40	56	43	42	<40
Benzene (F0)	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
TRH C6-C10	µg/L	50	<50	79	<50	<50	<50
TRH C6-C10 minus BTEX (F1)	µg/L	50	<50	73	<50	<50	<50

ANALYTICAL RESULTS

SE248514 R0

GW_QR1

BH12M

GW_QD1

TRH (Total Recoverable Hydrocarbons) in Water [AN403] Tested: 5/6/2023

BH1M	BH9M	
WATER	WATER	

			WATER	WATER	WATER	WATER	WATER
PARAMETER	UOM	LOR	SE248514.001	SE248514.002	SE248514.003	SE248514.004	SE248514.005
TRH C10-C14	μg/L	50	<50	300	<50	<50	<50
TRH C15-C28	μg/L	200	<200	270	<200	<200	<200
TRH C29-C36	μg/L	200	<200	<200	<200	<200	<200
TRH C37-C40	μg/L	200	<200	<200	<200	<200	<200
TRH >C10-C16	μg/L	60	<60	300	<60	<60	<60
TRH >C10-C16 - Naphthalene (F2)	μg/L	60	<60	300	<60	<60	<60
TRH >C16-C34 (F3)	μg/L	500	<500	<500	<500	<500	<500
TRH >C34-C40 (F4)	µg/L	500	<500	<500	<500	<500	<500
TRH C10-C40	µg/L	320	<320	710	<320	<320	<320

PAH (Polynuclear Aromatic Hydrocarbons) in Water [AN420] Tested: 5/6/2023

			BH1M	BH9M	BH12M
				WATED	
			-	-	-
PARAMETER	UOM	LOR	SE248514.001	SE248514.002	SE248514.003
Naphthalene	µg/L	0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	µg/L	0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	µg/L	0.1	<0.1	<0.1	<0.1
Acenaphthylene	µg/L	0.1	<0.1	<0.1	<0.1
Acenaphthene	µg/L	0.1	<0.1	<0.1	<0.1
Fluorene	µg/L	0.1	<0.1	<0.1	<0.1
Phenanthrene	µg/L	0.1	<0.1	<0.1	<0.1
Anthracene	µg/L	0.1	<0.1	<0.1	<0.1
Fluoranthene	µg/L	0.1	<0.1	<0.1	<0.1
Pyrene	µg/L	0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	µg/L	0.1	<0.1	<0.1	<0.1
Chrysene	µg/L	0.1	<0.1	<0.1	<0.1
Benzo(b&j)fluoranthene	µg/L	0.1	<0.1	<0.1	<0.1
Benzo(k)fluoranthene	µg/L	0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene	µg/L	0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	μg/L	0.1	<0.1	<0.1	<0.1
Dibenzo(ah)anthracene	µg/L	0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	μg/L	0.1	<0.1	<0.1	<0.1
Total PAH (18)	µg/L	1	<1	<1	<1

SE248514 R0

Trace Metals (Dissolved) in Water by ICPMS [AN318] Tested: 2/6/2023

			BH1M	внэм	BH12M	GW_QD1	GW_QR1
			WATER	WATER	WATER	WATER	WATER
			1/6/2023	1/6/2023	1/6/2023	1/6/2023	1/6/2023
PARAMETER	UOM	LOR	SE248514.001	SE248514.002	SE248514.003	SE248514.004	SE248514.005
Arsenic	µg/L	1	<1	<1	<1	<1	<1
Cadmium	µg/L	0.1	0.5	<0.1	0.1	0.1	<0.1
Chromium	µg/L	1	<1	<1	<1	<1	<1
Copper	µg/L	1	1	<1	3	3	<1
Lead	µg/L	1	<1	<1	<1	<1	<1
Nickel	µg/L	1	2	32	9	9	<1
Zinc	µg/L	5	14	150	46	44	<5

SE248514 R0

Mercury (dissolved) in Water [AN311(Perth)/AN312] Tested: 2/6/2023

			BH1M	BH9M	BH12M	GW_QD1	GW_QR1
			WATER	WATER	WATER	WATER	WATER
PARAMETER	UOM	LOR	SE248514.001	SE248514.002	SE248514.003	SE248514.004	SE248514.005
Mercury	mg/L	0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001

METHOD	METHODOLOGY SUMMARY
AN020	Unpreserved water sample is filtered through a 0.45µm membrane filter and acidified with nitric acid similar to APHA3030B.
AN311(Perth)/AN312	Mercury by Cold Vapour AAS in Waters: Mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500.
AN318	Determination of elements at trace level in waters by ICP-MS technique,, referenced to USEPA 6020B and USEPA 200.8 (5.4).
AN403	Total Recoverable Hydrocarbons: Determination of Hydrocarbons by gas chromatography after a solvent extraction. Detection is by flame ionisation detector (FID) that produces an electronic signal in proportion to the combustible matter passing through it. Total Recoverable Hydrocarbons (TRH) are routinely reported as four alkane groupings based on the carbon chain length of the compounds: C6-C9, C10-C14, C15-C28 and C29-C36 and in recognition of the NEPM 1999 (2013), >C10-C16 (F2), >C16-C34 (F3) and >C34-C40 (F4). Where F2 is corrected for Naphthalene, the VOC data for Naphthalene is used.
AN403	Additionally, the volatile C6-C9/C6-C10 fractions may be determined by a purge and trap technique and GC/MS because of the potential for volatiles loss. Total Recoveerable Hydrocarbons - Silica (TRH-Silica) follows the same method of analysis after silica gel cleanup of the solvent extract. Aliphatic/Aromatic Speciation follows the same method of analysis after fractionation of the solvent extract over silica with differential polarity of the eluent solvents.
AN403	The GC/FID method is not well suited to the analysis of refined high boiling point materials (ie lubricating oils or greases) but is particularly suited for measuring diesel, kerosene and petrol if care to control volatility is taken. This method will detect naturally occurring hydrocarbons, lipids, animal fats, phenols and PAHs if they are present at sufficient levels, dependent on the use of specific cleanup/fractionation techniques. Reference USEPA 3510B, 8015B.
AN420	(SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols (etc) in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D). Total PAH calculated from individual analyte detections at or above the limit of reporting.
AN433	VOCs and C6-C9 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.

FOOTNOTES -

*	NATA accreditation does not cover	
	the performance of this service.	
**	Indicative data, theoretical holding	
	time exceeded.	

*** Indicates that both * and ** apply.

Not analysed.
NVL Not validated.
IS Insufficient sample for analysis.
LNR Sample listed, but not received.

UOM Unit of Measure. LOR Limit of Reporting. ↑↓ Raised/lowered Limit of Reporting.

Unless it is reported that sampling has been performed by SGS, the samples have been analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC and MU criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: <u>www.sgs.com.au/en-gb/environment-health-and-safety</u>.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This report must not be reproduced, except in full.

Appendix J – QA/QC Assessment

J1.1 Quality Assurance / Quality Control Program

Quality assurance comprises an assessment of the reliability of the field procedures and laboratory results against standard industry practices and the SAQP. A summary of the project QA/QC measures incorporated into this DSI is presented in **Table J-1**.

Task	Description	Project	
Field QA/QC			
General	Work was to be undertaken following standard field procedures which are based on industry accepted standard practice.	Soil samples were collected directly from the augers. Soil samples were placed in 250 ml glass jars, which were filled to minimise headspace, and sealed using Teflon-coated lids. Groundwater samples were obtained using sample bottles/vials provided by the laboratory.	
	All fieldwork was supervised by a suitably qualified and experienced scientist or engineer.	Yes	
Equipment Decontamination	Sampling equipment to be decontaminated after the collection of each soil sample by washing with phosphate-free detergent (such as Decon 90 or Alconox) and potable water, followed by a final distilled water rinse. One rinsate blank would be collected and analysed for the primary contaminants. All results should be non-detect.	Yes Two rinsate samples were collected in total. One was collected during the soil investigation and the other was collected during the groundwater monitoring event. All results were reported as below the detection limits.	
Transport	Samples were stored in a chilled (with ice) cooler box and transported to the laboratories. To ensure the integrity of the samples from collection to receipt by the analytical laboratory, samples were sent by courier to the laboratories under 'chain of custody' describing sample preservation and transport duration.	Yes	
Trip Blanks	Trip Blank (TB) samples were to be prepared and analysed by the primary laboratory for BTEX. Analytical results for this sample were below the laboratory LOR, indicating that ideal sample transport and handling conditions were achieved.	Two trip blank samples prepared by the primary laboratory, were analysed for BTEX during soil and groundwater testing. The results were reported below the laboratory LOR, indicating that sample transport acceptable.	
Trip Spikes	Trip spike (TS) samples were to be submitted to the primary laboratory for BTEX analysis, the results for which were reported within the RPD acceptance levels for trip spike recovery. It was therefore concluded that satisfactory sample transport and handling conditions were achieved.	Two trip spike samples were submitted to the primary laboratory for BTEX analysis, the results of which were reported within the RPD acceptance levels for trip spike recovery. It was therefore concluded that satisfactory sample transport and handling conditions were achieved.	

Table J-1 Project QC Measures
Task	Description	Project
Duplicates	 Field duplicate samples were analysed as follows: intra-laboratory duplicate samples at a rate of 1 in 20 primary samples (as per NEPM); and inter-laboratory duplicate samples at a rate of 1 in 20 primary samples (as per NEPM). Field and laboratory acceptable limits between 30-50% RPD as stated by AS4482.1–2005. RPDs that exceed this range may be considered acceptable where: Results are less than 10 times the limits of reporting (LOR); Results are less than 20 times the LOR and the RPD is less than 50%; or Heterogeneous materials or volatile compounds are encountered. Non-compliance is to be documented in the report and the sample re-analysed or a higher level conservatively adopted. 	The required sampling density of 1 per 20 duplicated primary samples was achieved and sufficient for the investigation with the exception of the soil inter- laboratory duplicate sample since the secondary laboratory was not able to locate the sample (lost). Laboratory duplicates prepared and analysed. Minor non-conformance, with negligible effects on data use for interpretative purposes. Field QC samples and calculated RPD values are presented in Table J-5 . Copies of laboratory reports are included in Appendix I .
Laboratory QA/QC		
Laboratory Analysis	The laboratories selected are NATA accredited for the analytes selected and perform their own internal QA/QC programs.	Yes SGS - primary laboratory Envirolab - secondary laboratory Laboratory QA/QC analyses are included in Appendix L. Practical Quantitation Limits for all tested parameters
	the analyses to be undertaken.	during the DSI are presented in summary tables in Appendix J.
Holding Times	Holding times are the maximum permissible elapsed time in days from the collection of the sample to its extraction and/or analysis. All extraction and analyses should be completed within standard guidelines.	Assessment of holding times has been undertaken by the laboratory. In SGS laboratory certificate SE248198, extraction date of a few non-critical items (pH and TRH in rinsate water) noticed, it considered minor-no conformance but has no effect on the primary samples for contamination investigation purpose Minor non-conformance, with negligible effects on data use for interpretative purposes.
Method Blanks	The method blank sample is laboratory prepared, containing the reagents used to prepare the sample for final analysis. The purpose of this procedure is to identify contamination in the reagent materials and assess potential bias in the sample analysis due to contaminated reagents. The QC criterion aims to find no detectable contamination in the reagents. Each analysis procedure should be subject to a method blank analysis. The results of each should indicate that contaminants were not detected.	Assessment of method blanks has been undertaken by the laboratory.

Task	Description	Project
Laboratory Duplicates	Laboratory duplicates are field samples that are split in the laboratory and subsequently analysed a number of times in the same batch. These sub- samples are selected by the laboratory to assess the accuracy and precision of the analytical method. The selected laboratories should undertake QA/QC procedures such as calibration standards, laboratory control samples, surrogates, reference materials, sample duplicates and matrix spikes. Intra-laboratory duplicates should be performed at a frequency of 1 per 10 samples.	Assessment of laboratory duplicates has been undertaken by the laboratory. Duplicate RPD outside of acceptable range for a few metals in soil samples noticed and likely due to sample heterogeneity. Minor non-conformance, with negligible effects on data use for interpretative purposes.
Laboratory Control Standard	A laboratory control standard is a standard reference material used in preparing primary standards. The concentration should be equivalent to a mid-range standard to confirm the primary calibration. Laboratory control samples should be performed on a frequency of 1 per 20 samples or at least one per analytical run.	Assessment of laboratory control standards has been undertaken by the laboratory.
Matrix Spikes	Matric spikes are field samples to which a predetermined stock solution of known concentration has been added. The samples are then analysed for recovery of the known addition. Recoveries should be within the stated laboratory control limits of 70 to 130% and duplicates should have RPDs of less than 50%.	Assessment of matrix spikes has been undertaken by the laboratory. In SGS laboratory certificate SE248198,one item in matrix spike exceed the criteria and likely due to sample heterogeneity Minor non-conformance, with negligible effects on data use for interpretative purposes.
Surrogate Spikes	Surrogate spikes provide a means of checking, for every analysis that no gross errors have occurred at any stage of the procedure leading to significant analyte loss. Recoveries should be within the stated laboratory control limits of 70 to 130%.	Assessment of surrogate spikes has been undertaken by the laboratory.
Conclusion	The QA/QC indicators should either all comply with the required standards or showed no variations that would have no significant effect on the quality of the data.	Assessment of the investigation QA/QC is presented in the following sections.

J1.2 Calculation of Relative Percentage Difference

The RPD values were calculated using the following equation:

$$RPD = \frac{|C_0 - C_R|}{[(C_0 + C_R)/2]} \times 100$$

Where:

 C_{O} = Concentration obtained for the primary sample; and

 C_R = Concentration obtained for the blind replicate or split duplicate sample.

J2.1 Field QA/QC

The field (intra- / inter- laboratory) duplicate samples collected during the works are summarised in **Table J-2**. Inter-lab duplicates were analysed by the secondary laboratory, Envirolab.

 Table J-2
 Field QC Sampling Program

Matrix	Primary QA Sample	Duplicate (Primary Lab)	Triplicate (Secondary Lab)	Total Duplicates
Soil	BH5_0.6-0.7	QD1	-	1
Groundwater	BH12M	GW-QD1	GW-QT1	2

J2.2 Field Data Quality Indicators

A discussion of the field data quality indicators is presented in Table J-3 below.

Table J-3 Field Data Quality Indicators

DQI	Item	Conformance
Precision Measure of the variability (or reproducibility) of data.	SOPs appropriate and complied with	Yes
Accuracy	SOPs appropriate and complied with	Yes
Quantitative measure of the closeness of reported data to the true values.	Calibration of instruments against known standards	Yes
Representativeness	Appropriate media sampled according to SAQP	Yes
Confidence the data are representative of each media present on the site.	Each media identified in SAQP sampled	Yes
Completeness	Each critical location sampled	Yes
Percentage of useable data from sampling episode (set).	SAQP appropriate and complied with	Yes
	Appropriate number of field duplicate samples taken	Yes
	Experienced sampler	Yes
	Field documentation correct	Yes
Comparability	Same sampling method used on each occasion/location	Yes
Contidence [expressed qualitatively] that data may be considered to be	Experienced sampler	Yes
equivalent for each sampling and analytical event.	Same type of samples collected (filtered, size, fractions)	Yes

J2.3 Conclusion for the Field QA/QC

All field work, including equipment decontamination and sample preservation and transport, was conducted in accordance with the SAQP and SOPs, which were devised with reference to industry-approved guidelines. Appropriate QC measures were integrated into each sampling event and the DQI were met, or if not, the minor non-conformances had negligible effects on the data use for interpretative purposes.

All samples, including field QC samples, were transported to the primary and secondary laboratories under chilled conditions, using strict COC procedures. Relevant documents (COC forms) were presented with the samples at the times of delivery. All supporting documents (COCs and SRAs) were completed in full and signed, where appropriate. Copies of these were included in **Appendix H**. El considered the field QA/QC program carried out during the DSI to be appropriate.

J2.4 Laboratory QA/QC

Primary and intra-laboratory duplicate samples were analysed by SGS (located in Alexandria NSW), with inter-laboratory duplicate samples analysed by Envirolab (located in Chatswood NSW). All laboratories are accredited by NATA for the analyses undertaken. A discussion of the laboratory DQIs is presented below.

Table J-4 Laboratory Data Quality Indicators

DQI	Item	Conformance
Completeness	All critical samples analysed according to SAQP and proposal	Yes
A measure of the amount of useable data (expressed as %)	All analytes analysed according to SAQP in proposal	Yes
from a data collection activity	Appropriate methods and PQLs	Yes
	Sample documentation complete	Yes
	Sample holding times complied with	Yes
Comparability	Sample analytical methods used (including clean-up)	Yes
The confidence (expressed qualitatively) that data may be	Sample PQLs (justify/ quantify if different)	Yes
considered to be equivalent for each sampling and analytical	Same laboratories (justify/ quantify if different)	Yes
event	Same units (justify/ quantify if different)	Yes
Representativeness Confidence that data are representative of each media	All key samples analysed according to SAQP in the proposal	Yes
Precision	Analysis of laboratory duplicates	Yes
A quantitative measure of the variability (or reproducibility) of	Analysis of field duplicates	Yes
data	Analysis of laboratory-prepared volatile trip spikes	Yes
Accuracy	Analysis of field blanks	Yes
A quantitative measure of the closeness of reported data to	Analysis of rinsate blanks	Yes
the true value	Analysis of method blanks	Yes
	Analysis of matrix spikes (MS)	Yes
	Analysis of surrogate spikes	Yes
	Analysis of reference materials	Not applicable
	Analysis of laboratory control samples	Yes

J2.5 Conclusions for the Laboratory QA/QC

All contracted laboratories (SGS and Envirolab) were accredited by NATA for the analyses undertaken. All analytical procedures used were industry recognised and endorsed standard methods. Appropriate QC measures were integrated into each testing batch and the DQI were met, or if not, the variability was suitably justified. All final reports were submitted in full and included all requested analyses, as per the signed COC forms. El considered the laboratory QA/QC programs carried out during the DSI to be appropriate.

J2.6 Summary of Project QA/QC

The project DQOs specified in **Section 5**, **Table 5-1** were considered to have been achieved. The adopted QA/QC program ensured that the data collated during the DSI were accurate, precise and representative of the (final) site conditions. It was therefore considered that the data were reliable and that the results could be used for DSI interpretative purposes.

Appendix K – Laboratory QA/QC and DQOs

STATEMENT OF QA/QC PERFORMANCE

CLIENT DETAILS		LABORATORY DETAILS	
Contact Client Address	Andrew Schmidt EI AUSTRALIA SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Manager Laboratory Address	Huong Crawford SGS Alexandria Environmental Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 95160722	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	andrew.schmidt@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E25996 1H Hospital Rd Concord	SGS Reference	SE248198 R0
Order Number	E25996	Date Received	25 May 2023
Samples	25	Date Reported	05 Jun 2023

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met with the exception of the following:

Extraction Date	pH in soil (1:5)	3 items
	TRH (Total Recoverable Hydrocarbons) in Water	1 item
Duplicate	PAH (Polynuclear Aromatic Hydrocarbons) in Soil	2 items
	VOCs in Water	1 item
Matrix Spike	Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES	1 item

- SAMPLE SUMMARY						
Sample counts by matrix Date documentation received Samples received without headspace Sample container provider Samples received in correct containers Sample cooling method Complete documentation received	22 Soil, 1 Wat 25/5/2023 Yes SGS Yes Ice Bricks Yes	er Type of de Samples Sample te Turnarour Sufficient Samples d	Type of documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested Sufficient sample for analysis Samples clearly labelled		COC Yes 13.5°C Standard Yes Yes	
SGS Australia Pty Ltd Environi	nent, Health and Uni	t 16 33 Maddox St	Alexandria NSW 2015	Australia	t +61 2 8594 0400	www.sgs.com.au

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd Alexandria NSW 2015 Alexandria NSW 2015 t +61 2 8594 0400 f +61 2 8594 0499

Australia

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Fibre Identification in soil Method: ME-(AU)-[ENV]AS4964/AN602 Sample Name Extraction Due Analysed Sample No. QC Ref Sampled Received Extracted Analvsis Due BH1M 0.5-0.6 SE248198.001 LB281069 24 May 2023 25 May 2023 23 May 2024 31 May 2023 23 May 2024 02 Jun 2023 BH2_0.1-0.2 SE248198.003 LB281069 24 May 2023 25 May 2023 23 May 2024 31 May 2023 23 May 2024 02 Jun 2023 BH3 0.20-0.30 SE248198.005 LB281069 23 May 2023 25 May 2023 22 May 2024 31 May 2023 22 May 2024 02 Jun 2023 BH4 0.5-0.6 SE248198.006 LB281069 24 May 2023 25 May 2023 23 May 2024 31 May 2023 23 May 2024 02 Jun 2023 BH5_0.60-0.70 SE248198.009 LB281069 23 May 2023 25 May 2023 22 May 2024 31 May 2023 22 May 2024 02 Jun 2023 BH6 0.10-0.20 SE248198 011 I B281069 23 May 2023 25 May 2023 22 May 2024 31 May 2023 22 May 2024 02 Jun 2023 BH7 0.5-0.6 SE248198.013 LB281069 23 May 2023 25 May 2023 22 May 2024 31 May 2023 22 May 2024 02 Jun 2023 BH8 0.20-0.30 SE248198.015 LB281069 23 May 2023 25 May 2023 22 May 2024 22 May 2024 02 Jun 2023 31 May 2023 BH9_0.10-0.20 SE248198.018 LB281069 23 May 2023 25 May 2023 22 May 2024 31 May 2023 22 May 2024 02 Jun 2023 BH10 0.20-0.30 SE248198.019 LB281069 23 May 2023 25 May 2023 22 May 2024 31 May 2023 22 May 2024 02 Jun 2023 BH11 0.50-0.60 SE248198.020 23 May 2023 25 May 2023 02 Jun 2023 LB281069 22 May 2024 31 May 2023 22 May 2024 23 May 2023 BH12M_0.3-0.4 SE248198.025 LB281069 25 May 2023 22 May 2024 31 May 2023 22 May 2024 02 Jun 2023 Gravimetric Determination of Asbestos in Soil Method: ME-(AU)-[ENV]AN605 Analysed Sample Name Sample No. QC Ref Sampled Received Extraction Due Extracted Analysis Due BH1M_0.5-0.6 SE248198.001 LB281069 24 May 2023 25 May 2023 20 Nov 2023 31 May 2023 20 Nov 2023 02 Jun 2023 BH2_0.1-0.2 SE248198.003 LB281069 24 May 2023 25 May 2023 20 Nov 2023 31 May 2023 20 Nov 2023 02 Jun 2023 BH3 0.20-0.30 SE248198.005 LB281069 23 May 2023 25 May 2023 19 Nov 2023 31 May 2023 19 Nov 2023 02 Jun 2023 SE248198.006 LB281069 24 May 2023 25 May 2023 20 Nov 2023 BH4_0.5-0.6 20 Nov 2023 31 May 2023 02 Jun 2023 BH5 0.60-0.70 SE248198.009 LB281069 23 May 2023 25 May 2023 19 Nov 2023 02 Jun 2023 19 Nov 2023 31 May 2023 BH6 0.10-0.20 SE248198.011 LB281069 23 May 2023 25 May 2023 19 Nov 2023 31 May 2023 19 Nov 2023 02 Jun 2023 BH7 0.5-0.6 SE248198.013 LB281069 23 May 2023 25 May 2023 19 Nov 2023 31 May 2023 19 Nov 2023 02 Jun 2023 BH8 0.20-0.30 SE248198.015 LB281069 23 May 2023 25 May 2023 19 Nov 2023 31 May 2023 19 Nov 2023 02 Jun 2023 SE248198.018 LB281069 23 May 2023 25 May 2023 19 Nov 2023 19 Nov 2023 BH9 0.10-0.20 31 May 2023 02 Jun 2023 BH10_0.20-0.30 SE248198.019 LB281069 23 May 2023 25 May 2023 19 Nov 2023 31 May 2023 19 Nov 2023 02 Jun 2023 BH11_0.50-0.60 SE248198.020 LB281069 23 May 2023 25 May 2023 19 Nov 2023 31 May 2023 19 Nov 2023 02 Jun 2023 Mercury (dissolved) in Water Method: ME-(AU)-[ENV]AN311(Perth)/AN312

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
QR1	SE248198.024	LB281022	23 May 2023	25 May 2023	20 Jun 2023	31 May 2023	20 Jun 2023	31 May 2023

Mercury in Soil							Method: I	ME-(AU)-[ENV]AN312
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1M_0.5-0.6	SE248198.001	LB280939	24 May 2023	25 May 2023	21 Jun 2023	30 May 2023	21 Jun 2023	31 May 2023
BH1M_2.0-2.1	SE248198.002	LB280939	24 May 2023	25 May 2023	21 Jun 2023	30 May 2023	21 Jun 2023	31 May 2023
BH2_0.1-0.2	SE248198.003	LB280939	24 May 2023	25 May 2023	21 Jun 2023	30 May 2023	21 Jun 2023	31 May 2023
BH2_1.5-1.6	SE248198.004	LB280939	24 May 2023	25 May 2023	21 Jun 2023	30 May 2023	21 Jun 2023	31 May 2023
BH3_0.20-0.30	SE248198.005	LB280939	23 May 2023	25 May 2023	20 Jun 2023	30 May 2023	20 Jun 2023	31 May 2023
BH4_0.5-0.6	SE248198.006	LB280939	24 May 2023	25 May 2023	21 Jun 2023	30 May 2023	21 Jun 2023	31 May 2023
BH4_2.0-2.1	SE248198.007	LB280939	24 May 2023	25 May 2023	21 Jun 2023	30 May 2023	21 Jun 2023	31 May 2023
BH5_0.60-0.70	SE248198.009	LB280939	23 May 2023	25 May 2023	20 Jun 2023	30 May 2023	20 Jun 2023	31 May 2023
BH5_1.30-1.40	SE248198.010	LB280939	23 May 2023	25 May 2023	20 Jun 2023	30 May 2023	20 Jun 2023	31 May 2023
BH6_0.10-0.20	SE248198.011	LB280939	23 May 2023	25 May 2023	20 Jun 2023	30 May 2023	20 Jun 2023	31 May 2023
BH7_0.5-0.6	SE248198.013	LB280939	23 May 2023	25 May 2023	20 Jun 2023	30 May 2023	20 Jun 2023	31 May 2023
BH7_1.5-1.6	SE248198.014	LB280939	23 May 2023	25 May 2023	20 Jun 2023	30 May 2023	20 Jun 2023	31 May 2023
BH8_0.20-0.30	SE248198.015	LB280939	23 May 2023	25 May 2023	20 Jun 2023	30 May 2023	20 Jun 2023	31 May 2023
BH8_0.90-1.00	SE248198.017	LB280939	23 May 2023	25 May 2023	20 Jun 2023	30 May 2023	20 Jun 2023	31 May 2023
BH9_0.10-0.20	SE248198.018	LB280939	23 May 2023	25 May 2023	20 Jun 2023	30 May 2023	20 Jun 2023	31 May 2023
BH10_0.20-0.30	SE248198.019	LB280939	23 May 2023	25 May 2023	20 Jun 2023	30 May 2023	20 Jun 2023	31 May 2023
BH11_0.50-0.60	SE248198.020	LB280939	23 May 2023	25 May 2023	20 Jun 2023	30 May 2023	20 Jun 2023	31 May 2023
QD1	SE248198.021	LB280939	23 May 2023	25 May 2023	20 Jun 2023	30 May 2023	20 Jun 2023	31 May 2023
BH12M_0.3-0.4	SE248198.025	LB280939	23 May 2023	25 May 2023	20 Jun 2023	30 May 2023	20 Jun 2023	31 May 2023
Moisture Content							Method: I	ME-(AU)-[ENV]AN002
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1M_0.5-0.6	SE248198.001	LB280940	24 May 2023	25 May 2023	07 Jun 2023	30 May 2023	04 Jun 2023	31 May 2023
BH1M_2.0-2.1	SE248198.002	LB280940	24 May 2023	25 May 2023	07 Jun 2023	30 May 2023	04 Jun 2023	31 May 2023
BH2_0.1-0.2	SE248198.003	LB280940	24 May 2023	25 May 2023	07 Jun 2023	30 May 2023	04 Jun 2023	31 May 2023
BH2_1.5-1.6	SE248198.004	LB280940	24 May 2023	25 May 2023	07 Jun 2023	30 May 2023	04 Jun 2023	31 May 2023
BH3_0.20-0.30	SE248198.005	LB280940	23 May 2023	25 May 2023	06 Jun 2023	30 May 2023	04 Jun 2023	31 May 2023
BH4 0.5-0.6	SE248198.006	LB280940	24 May 2023	25 May 2023	07 Jun 2023	30 May 2023	04 Jun 2023	31 May 2023

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Moisture Content (continued)

Moisture Content (continued)							Method: N	IE-(AU)-[ENV]AN002
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH4_2.0-2.1	SE248198.007	LB280940	24 May 2023	25 May 2023	07 Jun 2023	30 May 2023	04 Jun 2023	31 May 2023
BH5_0.20-0.30	SE248198.008	LB280940	23 May 2023	25 May 2023	06 Jun 2023	30 May 2023	04 Jun 2023	31 May 2023
BH5_0.60-0.70	SE248198.009	LB280940	23 May 2023	25 May 2023	06 Jun 2023	30 May 2023	04 Jun 2023	31 May 2023
BH5_1.30-1.40	SE248198.010	LB280940	23 May 2023	25 May 2023	06 Jun 2023	30 May 2023	04 Jun 2023	31 May 2023
BH6_0.10-0.20	SE248198.011	LB280940	23 May 2023	25 May 2023	06 Jun 2023	30 May 2023	04 Jun 2023	31 May 2023
BH7_0.5-0.6	SE248198.013	LB280940	23 May 2023	25 May 2023	06 Jun 2023	30 May 2023	04 Jun 2023	31 May 2023
BH7_1.5-1.6	SE248198.014	LB280940	23 May 2023	25 May 2023	06 Jun 2023	30 May 2023	04 Jun 2023	31 May 2023
BH8_0.20-0.30	SE248198.015	LB280940	23 May 2023	25 May 2023	06 Jun 2023	30 May 2023	04 Jun 2023	31 May 2023
BH8_0.90-1.00	SE248198.017	LB280940	23 May 2023	25 May 2023	06 Jun 2023	30 May 2023	04 Jun 2023	31 May 2023
BH9_0.10-0.20	SE248198.018	LB280940	23 May 2023	25 May 2023	06 Jun 2023	30 May 2023	04 Jun 2023	31 May 2023
BH10_0.20-0.30	SE248198.019	LB280940	23 May 2023	25 May 2023	06 Jun 2023	30 May 2023	04 Jun 2023	31 May 2023
BH11_0.50-0.60	SE248198.020	LB280940	23 May 2023	25 May 2023	06 Jun 2023	30 May 2023	04 Jun 2023	31 May 2023
QD1	SE248198.021	LB280940	23 May 2023	25 May 2023	06 Jun 2023	30 May 2023	04 Jun 2023	31 May 2023
TB1	SE248198.022	LB280940	23 May 2023	25 May 2023	06 Jun 2023	30 May 2023	04 Jun 2023	31 May 2023
BH12M_0.3-0.4	SE248198.025	LB280940	23 May 2023	25 May 2023	06 Jun 2023	30 May 2023	04 Jun 2023	31 May 2023
OC Pesticides in Soil Method: ME-(AU)-[ENV]AN42								
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1M_0.5-0.6	SE248198.001	LB280936	24 May 2023	25 May 2023	07 Jun 2023	30 May 2023	09 Jul 2023	01 Jun 2023
BH1M_2.0-2.1	SE248198.002	LB280936	24 May 2023	25 May 2023	07 Jun 2023	30 May 2023	09 Jul 2023	01 Jun 2023
BH2_0.1-0.2	SE248198.003	LB280936	24 May 2023	25 May 2023	07 Jun 2023	30 May 2023	09 Jul 2023	01 Jun 2023
BH2_1.5-1.6	SE248198.004	LB280936	24 May 2023	25 May 2023	07 Jun 2023	30 May 2023	09 Jul 2023	01 Jun 2023
BH3_0.20-0.30	SE248198.005	LB280936	23 May 2023	25 May 2023	06 Jun 2023	30 May 2023	09 Jul 2023	01 Jun 2023
BH4_0.5-0.6	SE248198.006	LB280936	24 May 2023	25 May 2023	07 Jun 2023	30 May 2023	09 Jul 2023	01 Jun 2023
BH4_2.0-2.1	SE248198.007	LB280936	24 May 2023	25 May 2023	07 Jun 2023	30 May 2023	09 Jul 2023	01 Jun 2023
BH5_0.60-0.70	SE248198.009	LB280936	23 May 2023	25 May 2023	06 Jun 2023	30 May 2023	09 Jul 2023	01 Jun 2023
BH5_1.30-1.40	SE248198.010	LB280936	23 May 2023	25 May 2023	06 Jun 2023	30 May 2023	09 Jul 2023	01 Jun 2023
BH6_0.10-0.20	SE248198.011	LB280936	23 May 2023	25 May 2023	06 Jun 2023	30 May 2023	09 Jul 2023	01 Jun 2023
BH7_0.5-0.6	SE248198.013	LB280936	23 May 2023	25 May 2023	06 Jun 2023	30 May 2023	09 Jul 2023	01 Jun 2023
BH7_1.5-1.6	SE248198.014	LB280936	23 May 2023	25 May 2023	06 Jun 2023	30 May 2023	09 Jul 2023	01 Jun 2023
BH8_0.20-0.30	SE248198.015	LB280936	23 May 2023	25 May 2023	06 Jun 2023	30 May 2023	09 Jul 2023	01 Jun 2023
BH8_0.90-1.00	SE248198.017	LB280936	23 May 2023	25 May 2023	06 Jun 2023	30 May 2023	09 Jul 2023	01 Jun 2023
BH9_0.10-0.20	SE248198.018	LB280936	23 May 2023	25 May 2023	06 Jun 2023	30 May 2023	09 Jul 2023	01 Jun 2023
BH10_0.20-0.30	SE248198.019	LB280936	23 May 2023	25 May 2023	06 Jun 2023	30 May 2023	09 Jul 2023	01 Jun 2023
BH11_0.50-0.60	SE248198.020	LB280936	23 May 2023	25 May 2023	06 Jun 2023	30 May 2023	09 Jul 2023	01 Jun 2023
QD1	SE248198.021	LB280936	23 May 2023	25 May 2023	06 Jun 2023	30 May 2023	09 Jul 2023	01 Jun 2023
BH12M_0.3-0.4	SE248198.025	LB280936	23 May 2023	25 May 2023	06 Jun 2023	30 May 2023	09 Jul 2023	01 Jun 2023

OP Pesticides in Soil

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1M_0.5-0.6	SE248198.001	LB280936	24 May 2023	25 May 2023	07 Jun 2023	30 May 2023	09 Jul 2023	31 May 2023
BH1M_2.0-2.1	SE248198.002	LB280936	24 May 2023	25 May 2023	07 Jun 2023	30 May 2023	09 Jul 2023	31 May 2023
BH2_0.1-0.2	SE248198.003	LB280936	24 May 2023	25 May 2023	07 Jun 2023	30 May 2023	09 Jul 2023	31 May 2023
BH2_1.5-1.6	SE248198.004	LB280936	24 May 2023	25 May 2023	07 Jun 2023	30 May 2023	09 Jul 2023	31 May 2023
BH3_0.20-0.30	SE248198.005	LB280936	23 May 2023	25 May 2023	06 Jun 2023	30 May 2023	09 Jul 2023	31 May 2023
BH4_0.5-0.6	SE248198.006	LB280936	24 May 2023	25 May 2023	07 Jun 2023	30 May 2023	09 Jul 2023	31 May 2023
BH4_2.0-2.1	SE248198.007	LB280936	24 May 2023	25 May 2023	07 Jun 2023	30 May 2023	09 Jul 2023	31 May 2023
BH5_0.60-0.70	SE248198.009	LB280936	23 May 2023	25 May 2023	06 Jun 2023	30 May 2023	09 Jul 2023	31 May 2023
BH5_1.30-1.40	SE248198.010	LB280936	23 May 2023	25 May 2023	06 Jun 2023	30 May 2023	09 Jul 2023	31 May 2023
BH6_0.10-0.20	SE248198.011	LB280936	23 May 2023	25 May 2023	06 Jun 2023	30 May 2023	09 Jul 2023	31 May 2023
BH7_0.5-0.6	SE248198.013	LB280936	23 May 2023	25 May 2023	06 Jun 2023	30 May 2023	09 Jul 2023	31 May 2023
BH7_1.5-1.6	SE248198.014	LB280936	23 May 2023	25 May 2023	06 Jun 2023	30 May 2023	09 Jul 2023	31 May 2023
BH8_0.20-0.30	SE248198.015	LB280936	23 May 2023	25 May 2023	06 Jun 2023	30 May 2023	09 Jul 2023	31 May 2023
BH8_0.90-1.00	SE248198.017	LB280936	23 May 2023	25 May 2023	06 Jun 2023	30 May 2023	09 Jul 2023	31 May 2023
BH9_0.10-0.20	SE248198.018	LB280936	23 May 2023	25 May 2023	06 Jun 2023	30 May 2023	09 Jul 2023	31 May 2023
BH10_0.20-0.30	SE248198.019	LB280936	23 May 2023	25 May 2023	06 Jun 2023	30 May 2023	09 Jul 2023	31 May 2023
BH11_0.50-0.60	SE248198.020	LB280936	23 May 2023	25 May 2023	06 Jun 2023	30 May 2023	09 Jul 2023	31 May 2023
QD1	SE248198.021	LB280936	23 May 2023	25 May 2023	06 Jun 2023	30 May 2023	09 Jul 2023	31 May 2023
BH12M_0.3-0.4	SE248198.025	LB280936	23 May 2023	25 May 2023	06 Jun 2023	30 May 2023	09 Jul 2023	31 May 2023

Method: ME-(AU)-[ENV]AN420

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

PAH (Polynuclear Aromatic Hydrocarbons) in Soil

PAH (Polynuclear Aromatic Hydrocarbons) in Soil Method: Me								
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1M_0.5-0.6	SE248198.001	LB280936	24 May 2023	25 May 2023	07 Jun 2023	30 May 2023	09 Jul 2023	31 May 2023
BH1M_2.0-2.1	SE248198.002	LB280936	24 May 2023	25 May 2023	07 Jun 2023	30 May 2023	09 Jul 2023	31 May 2023
BH2_0.1-0.2	SE248198.003	LB280936	24 May 2023	25 May 2023	07 Jun 2023	30 May 2023	09 Jul 2023	31 May 2023
BH2_1.5-1.6	SE248198.004	LB280936	24 May 2023	25 May 2023	07 Jun 2023	30 May 2023	09 Jul 2023	31 May 2023
BH3_0.20-0.30	SE248198.005	LB280936	23 May 2023	25 May 2023	06 Jun 2023	30 May 2023	09 Jul 2023	31 May 2023
BH4_0.5-0.6	SE248198.006	LB280936	24 May 2023	25 May 2023	07 Jun 2023	30 May 2023	09 Jul 2023	31 May 2023
BH4_2.0-2.1	SE248198.007	LB280936	24 May 2023	25 May 2023	07 Jun 2023	30 May 2023	09 Jul 2023	31 May 2023
BH5_0.60-0.70	SE248198.009	LB280936	23 May 2023	25 May 2023	06 Jun 2023	30 May 2023	09 Jul 2023	31 May 2023
BH5_1.30-1.40	SE248198.010	LB280936	23 May 2023	25 May 2023	06 Jun 2023	30 May 2023	09 Jul 2023	31 May 2023
BH6_0.10-0.20	SE248198.011	LB280936	23 May 2023	25 May 2023	06 Jun 2023	30 May 2023	09 Jul 2023	31 May 2023
BH7_0.5-0.6	SE248198.013	LB280936	23 May 2023	25 May 2023	06 Jun 2023	30 May 2023	09 Jul 2023	31 May 2023
BH7_1.5-1.6	SE248198.014	LB280936	23 May 2023	25 May 2023	06 Jun 2023	30 May 2023	09 Jul 2023	31 May 2023
BH8_0.20-0.30	SE248198.015	LB280936	23 May 2023	25 May 2023	06 Jun 2023	30 May 2023	09 Jul 2023	31 May 2023
BH8_0.90-1.00	SE248198.017	LB280936	23 May 2023	25 May 2023	06 Jun 2023	30 May 2023	09 Jul 2023	31 May 2023
BH9_0.10-0.20	SE248198.018	LB280936	23 May 2023	25 May 2023	06 Jun 2023	30 May 2023	09 Jul 2023	31 May 2023
BH10_0.20-0.30	SE248198.019	LB280936	23 May 2023	25 May 2023	06 Jun 2023	30 May 2023	09 Jul 2023	31 May 2023
BH11_0.50-0.60	SE248198.020	LB280936	23 May 2023	25 May 2023	06 Jun 2023	30 May 2023	09 Jul 2023	31 May 2023
QD1	SE248198.021	LB280936	23 May 2023	25 May 2023	06 Jun 2023	30 May 2023	09 Jul 2023	31 May 2023
BH12M_0.3-0.4	SE248198.025	LB280936	23 May 2023	25 May 2023	06 Jun 2023	30 May 2023	09 Jul 2023	31 May 2023
PCBs in Soil							Method: I	ME-(AU)-[ENV]AN420

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1M_0.5-0.6	SE248198.001	LB280936	24 May 2023	25 May 2023	07 Jun 2023	30 May 2023	09 Jul 2023	01 Jun 2023
BH1M_2.0-2.1	SE248198.002	LB280936	24 May 2023	25 May 2023	07 Jun 2023	30 May 2023	09 Jul 2023	01 Jun 2023
BH2_0.1-0.2	SE248198.003	LB280936	24 May 2023	25 May 2023	07 Jun 2023	30 May 2023	09 Jul 2023	01 Jun 2023
BH2_1.5-1.6	SE248198.004	LB280936	24 May 2023	25 May 2023	07 Jun 2023	30 May 2023	09 Jul 2023	01 Jun 2023
BH3_0.20-0.30	SE248198.005	LB280936	23 May 2023	25 May 2023	06 Jun 2023	30 May 2023	09 Jul 2023	01 Jun 2023
BH4_0.5-0.6	SE248198.006	LB280936	24 May 2023	25 May 2023	07 Jun 2023	30 May 2023	09 Jul 2023	01 Jun 2023
BH4_2.0-2.1	SE248198.007	LB280936	24 May 2023	25 May 2023	07 Jun 2023	30 May 2023	09 Jul 2023	01 Jun 2023
BH5_0.60-0.70	SE248198.009	LB280936	23 May 2023	25 May 2023	06 Jun 2023	30 May 2023	09 Jul 2023	01 Jun 2023
BH5_1.30-1.40	SE248198.010	LB280936	23 May 2023	25 May 2023	06 Jun 2023	30 May 2023	09 Jul 2023	01 Jun 2023
BH6_0.10-0.20	SE248198.011	LB280936	23 May 2023	25 May 2023	06 Jun 2023	30 May 2023	09 Jul 2023	01 Jun 2023
BH7_0.5-0.6	SE248198.013	LB280936	23 May 2023	25 May 2023	06 Jun 2023	30 May 2023	09 Jul 2023	01 Jun 2023
BH7_1.5-1.6	SE248198.014	LB280936	23 May 2023	25 May 2023	06 Jun 2023	30 May 2023	09 Jul 2023	01 Jun 2023
BH8_0.20-0.30	SE248198.015	LB280936	23 May 2023	25 May 2023	06 Jun 2023	30 May 2023	09 Jul 2023	01 Jun 2023
BH8_0.90-1.00	SE248198.017	LB280936	23 May 2023	25 May 2023	06 Jun 2023	30 May 2023	09 Jul 2023	01 Jun 2023
BH9_0.10-0.20	SE248198.018	LB280936	23 May 2023	25 May 2023	06 Jun 2023	30 May 2023	09 Jul 2023	01 Jun 2023
BH10_0.20-0.30	SE248198.019	LB280936	23 May 2023	25 May 2023	06 Jun 2023	30 May 2023	09 Jul 2023	01 Jun 2023
BH11_0.50-0.60	SE248198.020	LB280936	23 May 2023	25 May 2023	06 Jun 2023	30 May 2023	09 Jul 2023	01 Jun 2023
QD1	SE248198.021	LB280936	23 May 2023	25 May 2023	06 Jun 2023	30 May 2023	09 Jul 2023	01 Jun 2023
BH12M_0.3-0.4	SE248198.025	LB280936	23 May 2023	25 May 2023	06 Jun 2023	30 May 2023	09 Jul 2023	01 Jun 2023
pH in soil (1:5)							Method: N	ME-(AU)-[ENV]AN101

pH in soil (1:5)
--------------	------

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1M_2.0-2.1	SE248198.002	LB281025	24 May 2023	25 May 2023	31 May 2023	31 May 2023	01 Jun 2023	31 May 2023
BH2_1.5-1.6	SE248198.004	LB281025	24 May 2023	25 May 2023	31 May 2023	31 May 2023	01 Jun 2023	31 May 2023
BH4_2.0-2.1	SE248198.007	LB281025	24 May 2023	25 May 2023	31 May 2023	31 May 2023	01 Jun 2023	31 May 2023
BH5_1.30-1.40	SE248198.010	LB281025	23 May 2023	25 May 2023	30 May 2023	31 May 2023†	01 Jun 2023	31 May 2023
BH7_1.5-1.6	SE248198.014	LB281025	23 May 2023	25 May 2023	30 May 2023	31 May 2023†	01 Jun 2023	31 May 2023
BH8_0.90-1.00	SE248198.017	LB281025	23 May 2023	25 May 2023	30 May 2023	31 May 2023†	01 Jun 2023	31 May 2023

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES

Total Recoverable Elemen	ts in Soil/Waste Solids/Mat			Method: ME-(AU)-[ENV]AN040/AN320			
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1M_0.5-0.6	SE248198.001	LB280938	24 May 2023	25 May 2023	20 Nov 2023	30 May 2023	20 Nov 2023	31 May 2023
BH1M_2.0-2.1	SE248198.002	LB280938	24 May 2023	25 May 2023	20 Nov 2023	30 May 2023	20 Nov 2023	31 May 2023
BH2_0.1-0.2	SE248198.003	LB280938	24 May 2023	25 May 2023	20 Nov 2023	30 May 2023	20 Nov 2023	31 May 2023
BH2_1.5-1.6	SE248198.004	LB280938	24 May 2023	25 May 2023	20 Nov 2023	30 May 2023	20 Nov 2023	31 May 2023
BH3_0.20-0.30	SE248198.005	LB280938	23 May 2023	25 May 2023	19 Nov 2023	30 May 2023	19 Nov 2023	31 May 2023
BH4_0.5-0.6	SE248198.006	LB280938	24 May 2023	25 May 2023	20 Nov 2023	30 May 2023	20 Nov 2023	31 May 2023
BH4_2.0-2.1	SE248198.007	LB280938	24 May 2023	25 May 2023	20 Nov 2023	30 May 2023	20 Nov 2023	31 May 2023
BH5_0.20-0.30	SE248198.008	LB280938	23 May 2023	25 May 2023	19 Nov 2023	30 May 2023	19 Nov 2023	31 May 2023

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Total Recoverable Element	otal Recoverable Elements in Soil/Waste Solids/Materials by ICPOES (continued)							
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH5_0.60-0.70	SE248198.009	LB280938	23 May 2023	25 May 2023	19 Nov 2023	30 May 2023	19 Nov 2023	31 May 2023
BH5_1.30-1.40	SE248198.010	LB280938	23 May 2023	25 May 2023	19 Nov 2023	30 May 2023	19 Nov 2023	31 May 2023
BH6_0.10-0.20	SE248198.011	LB280938	23 May 2023	25 May 2023	19 Nov 2023	30 May 2023	19 Nov 2023	31 May 2023
BH7_0.5-0.6	SE248198.013	LB280938	23 May 2023	25 May 2023	19 Nov 2023	30 May 2023	19 Nov 2023	31 May 2023
BH7_1.5-1.6	SE248198.014	LB280938	23 May 2023	25 May 2023	19 Nov 2023	30 May 2023	19 Nov 2023	31 May 2023
BH8_0.20-0.30	SE248198.015	LB280938	23 May 2023	25 May 2023	19 Nov 2023	30 May 2023	19 Nov 2023	31 May 2023
BH8_0.90-1.00	SE248198.017	LB280938	23 May 2023	25 May 2023	19 Nov 2023	30 May 2023	19 Nov 2023	31 May 2023
BH9_0.10-0.20	SE248198.018	LB280938	23 May 2023	25 May 2023	19 Nov 2023	30 May 2023	19 Nov 2023	31 May 2023
BH10_0.20-0.30	SE248198.019	LB280938	23 May 2023	25 May 2023	19 Nov 2023	30 May 2023	19 Nov 2023	31 May 2023
BH11_0.50-0.60	SE248198.020	LB280938	23 May 2023	25 May 2023	19 Nov 2023	30 May 2023	19 Nov 2023	31 May 2023
QD1	SE248198.021	LB280938	23 May 2023	25 May 2023	19 Nov 2023	30 May 2023	19 Nov 2023	31 May 2023
BH12M_0.3-0.4	SE248198.025	LB280938	23 May 2023	25 May 2023	19 Nov 2023	30 May 2023	19 Nov 2023	31 May 2023
Trace Metals (Dissolved) in Water by ICPMS						Method: I	ME-(AU)-[ENV]AN318	
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
QR1	SE248198.024	LB281017	23 May 2023	25 May 2023	19 Nov 2023	31 May 2023	19 Nov 2023	31 May 2023

TRH (Total Recoverable Hydrocarbons) in Soil

TRH (Total Recoverable Hy	I (Total Recoverable Hydrocarbons) in Soil Method: ME-(AU)-[ENV]AN403									
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed		
BH1M_0.5-0.6	SE248198.001	LB280936	24 May 2023	25 May 2023	07 Jun 2023	30 May 2023	09 Jul 2023	01 Jun 2023		
BH1M_2.0-2.1	SE248198.002	LB280936	24 May 2023	25 May 2023	07 Jun 2023	30 May 2023	09 Jul 2023	01 Jun 2023		
BH2_0.1-0.2	SE248198.003	LB280936	24 May 2023	25 May 2023	07 Jun 2023	30 May 2023	09 Jul 2023	01 Jun 2023		
BH2_1.5-1.6	SE248198.004	LB280936	24 May 2023	25 May 2023	07 Jun 2023	30 May 2023	09 Jul 2023	01 Jun 2023		
BH3_0.20-0.30	SE248198.005	LB280936	23 May 2023	25 May 2023	06 Jun 2023	30 May 2023	09 Jul 2023	01 Jun 2023		
BH4_0.5-0.6	SE248198.006	LB280936	24 May 2023	25 May 2023	07 Jun 2023	30 May 2023	09 Jul 2023	01 Jun 2023		
BH4_2.0-2.1	SE248198.007	LB280936	24 May 2023	25 May 2023	07 Jun 2023	30 May 2023	09 Jul 2023	01 Jun 2023		
BH5_0.60-0.70	SE248198.009	LB280936	23 May 2023	25 May 2023	06 Jun 2023	30 May 2023	09 Jul 2023	01 Jun 2023		
BH5_1.30-1.40	SE248198.010	LB280936	23 May 2023	25 May 2023	06 Jun 2023	30 May 2023	09 Jul 2023	01 Jun 2023		
BH6_0.10-0.20	SE248198.011	LB280936	23 May 2023	25 May 2023	06 Jun 2023	30 May 2023	09 Jul 2023	01 Jun 2023		
BH7_0.5-0.6	SE248198.013	LB280936	23 May 2023	25 May 2023	06 Jun 2023	30 May 2023	09 Jul 2023	01 Jun 2023		
BH7_1.5-1.6	SE248198.014	LB280936	23 May 2023	25 May 2023	06 Jun 2023	30 May 2023	09 Jul 2023	01 Jun 2023		
BH8_0.20-0.30	SE248198.015	LB280936	23 May 2023	25 May 2023	06 Jun 2023	30 May 2023	09 Jul 2023	01 Jun 2023		
BH8_0.90-1.00	SE248198.017	LB280936	23 May 2023	25 May 2023	06 Jun 2023	30 May 2023	09 Jul 2023	01 Jun 2023		
BH9_0.10-0.20	SE248198.018	LB280936	23 May 2023	25 May 2023	06 Jun 2023	30 May 2023	09 Jul 2023	01 Jun 2023		
BH10_0.20-0.30	SE248198.019	LB280936	23 May 2023	25 May 2023	06 Jun 2023	30 May 2023	09 Jul 2023	01 Jun 2023		
BH11_0.50-0.60	SE248198.020	LB280936	23 May 2023	25 May 2023	06 Jun 2023	30 May 2023	09 Jul 2023	01 Jun 2023		
QD1	SE248198.021	LB280936	23 May 2023	25 May 2023	06 Jun 2023	30 May 2023	09 Jul 2023	01 Jun 2023		
BH12M_0.3-0.4	SE248198.025	LB280936	23 May 2023	25 May 2023	06 Jun 2023	30 May 2023	09 Jul 2023	01 Jun 2023		
TRH (Total Recoverable Hy	RH (Total Recoverable Hydrocarbons) in Water Method: ME-(AU)-[ENV]AN403									

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed	
QR1	SE248198.024	LB281023	23 May 2023	25 May 2023	30 May 2023	31 May 2023†	10 Jul 2023	31 May 2023	

Method: ME-(AU)-[ENV]AN433

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1M_0.5-0.6	SE248198.001	LB280937	24 May 2023	25 May 2023	07 Jun 2023	30 May 2023	07 Jun 2023	31 May 2023
BH1M_2.0-2.1	SE248198.002	LB280937	24 May 2023	25 May 2023	07 Jun 2023	30 May 2023	07 Jun 2023	31 May 2023
BH2_0.1-0.2	SE248198.003	LB280937	24 May 2023	25 May 2023	07 Jun 2023	30 May 2023	07 Jun 2023	31 May 2023
BH2_1.5-1.6	SE248198.004	LB280937	24 May 2023	25 May 2023	07 Jun 2023	30 May 2023	07 Jun 2023	31 May 2023
BH3_0.20-0.30	SE248198.005	LB280937	23 May 2023	25 May 2023	06 Jun 2023	30 May 2023	06 Jun 2023	31 May 2023
BH4_0.5-0.6	SE248198.006	LB280937	24 May 2023	25 May 2023	07 Jun 2023	30 May 2023	07 Jun 2023	31 May 2023
BH4_2.0-2.1	SE248198.007	LB280937	24 May 2023	25 May 2023	07 Jun 2023	30 May 2023	07 Jun 2023	31 May 2023
BH5_0.60-0.70	SE248198.009	LB280937	23 May 2023	25 May 2023	06 Jun 2023	30 May 2023	06 Jun 2023	31 May 2023
BH5_1.30-1.40	SE248198.010	LB280937	23 May 2023	25 May 2023	06 Jun 2023	30 May 2023	06 Jun 2023	31 May 2023
BH6_0.10-0.20	SE248198.011	LB280937	23 May 2023	25 May 2023	06 Jun 2023	30 May 2023	06 Jun 2023	31 May 2023
BH7_0.5-0.6	SE248198.013	LB280937	23 May 2023	25 May 2023	06 Jun 2023	30 May 2023	06 Jun 2023	31 May 2023
BH7_1.5-1.6	SE248198.014	LB280937	23 May 2023	25 May 2023	06 Jun 2023	30 May 2023	06 Jun 2023	31 May 2023
BH8_0.20-0.30	SE248198.015	LB280937	23 May 2023	25 May 2023	06 Jun 2023	30 May 2023	06 Jun 2023	31 May 2023
BH8_0.90-1.00	SE248198.017	LB280937	23 May 2023	25 May 2023	06 Jun 2023	30 May 2023	06 Jun 2023	31 May 2023
BH9_0.10-0.20	SE248198.018	LB280937	23 May 2023	25 May 2023	06 Jun 2023	30 May 2023	06 Jun 2023	31 May 2023

VOC's in Soil

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

VOC's in Soil (continued) Method: ME-(AU)-[ENV]AN433 Sample Name Sample No. QC Ref Sampled Received Extraction Due Extracted Analysis Due Analysed BH10 0.20-0.30 SE248198.019 LB280937 23 May 2023 25 May 2023 06 Jun 2023 30 May 2023 06 Jun 2023 31 May 2023 BH11_0.50-0.60 SE248198.020 LB280937 23 May 2023 25 May 2023 06 Jun 2023 30 May 2023 06 Jun 2023 31 May 2023 QD1 SE248198.021 LB280937 25 May 2023 06 Jun 2023 23 May 2023 06 Jun 2023 30 May 2023 31 May 2023 TB1 SE248198.022 LB280937 23 May 2023 25 May 2023 06 Jun 2023 30 May 2023 06 Jun 2023 31 May 2023 TS1 SE248198.023 LB280937 23 May 2023 25 May 2023 06 Jun 2023 30 May 2023 06 Jun 2023 31 May 2023 BH12M 0.3-0.4 SE248198.025 I B280937 23 May 2023 25 May 2023 06 Jun 2023 30 May 2023 06 Jun 2023 31 May 2023 VOCs in Water Method: ME-(AU)-[ENV]AN433 Sample Name Sample No. QC Ref Sampled Received Extraction Due Extracted Analysis Due Analysed QR1 SE248198.024 LB281035 23 May 2023 25 May 2023 06 Jun 2023 31 May 2023 06 Jun 2023 01 Jun 2023

Volatile Petroleum Hydrocarbons in Soil

'olatile Petroleum Hydrocarbons in Soil Method: ME-(AU)-[ENV]AN433										
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed		
BH1M_0.5-0.6	SE248198.001	LB280937	24 May 2023	25 May 2023	07 Jun 2023	30 May 2023	07 Jun 2023	31 May 2023		
BH1M_2.0-2.1	SE248198.002	LB280937	24 May 2023	25 May 2023	07 Jun 2023	30 May 2023	07 Jun 2023	31 May 2023		
BH2_0.1-0.2	SE248198.003	LB280937	24 May 2023	25 May 2023	07 Jun 2023	30 May 2023	07 Jun 2023	31 May 2023		
BH2_1.5-1.6	SE248198.004	LB280937	24 May 2023	25 May 2023	07 Jun 2023	30 May 2023	07 Jun 2023	31 May 2023		
BH3_0.20-0.30	SE248198.005	LB280937	23 May 2023	25 May 2023	06 Jun 2023	30 May 2023	06 Jun 2023	31 May 2023		
BH4_0.5-0.6	SE248198.006	LB280937	24 May 2023	25 May 2023	07 Jun 2023	30 May 2023	07 Jun 2023	31 May 2023		
BH4_2.0-2.1	SE248198.007	LB280937	24 May 2023	25 May 2023	07 Jun 2023	30 May 2023	07 Jun 2023	31 May 2023		
BH5_0.60-0.70	SE248198.009	LB280937	23 May 2023	25 May 2023	06 Jun 2023	30 May 2023	06 Jun 2023	31 May 2023		
BH5_1.30-1.40	SE248198.010	LB280937	23 May 2023	25 May 2023	06 Jun 2023	30 May 2023	06 Jun 2023	31 May 2023		
BH6_0.10-0.20	SE248198.011	LB280937	23 May 2023	25 May 2023	06 Jun 2023	30 May 2023	06 Jun 2023	31 May 2023		
BH7_0.5-0.6	SE248198.013	LB280937	23 May 2023	25 May 2023	06 Jun 2023	30 May 2023	06 Jun 2023	31 May 2023		
BH7_1.5-1.6	SE248198.014	LB280937	23 May 2023	25 May 2023	06 Jun 2023	30 May 2023	06 Jun 2023	31 May 2023		
BH8_0.20-0.30	SE248198.015	LB280937	23 May 2023	25 May 2023	06 Jun 2023	30 May 2023	06 Jun 2023	31 May 2023		
BH8_0.90-1.00	SE248198.017	LB280937	23 May 2023	25 May 2023	06 Jun 2023	30 May 2023	06 Jun 2023	31 May 2023		
BH9_0.10-0.20	SE248198.018	LB280937	23 May 2023	25 May 2023	06 Jun 2023	30 May 2023	06 Jun 2023	31 May 2023		
BH10_0.20-0.30	SE248198.019	LB280937	23 May 2023	25 May 2023	06 Jun 2023	30 May 2023	06 Jun 2023	31 May 2023		
BH11_0.50-0.60	SE248198.020	LB280937	23 May 2023	25 May 2023	06 Jun 2023	30 May 2023	06 Jun 2023	31 May 2023		
QD1	SE248198.021	LB280937	23 May 2023	25 May 2023	06 Jun 2023	30 May 2023	06 Jun 2023	31 May 2023		
TB1	SE248198.022	LB280937	23 May 2023	25 May 2023	06 Jun 2023	30 May 2023	06 Jun 2023	31 May 2023		
TS1	SE248198.023	LB280937	23 May 2023	25 May 2023	06 Jun 2023	30 May 2023	06 Jun 2023	31 May 2023		
BH12M_0.3-0.4	SE248198.025	LB280937	23 May 2023	25 May 2023	06 Jun 2023	30 May 2023	06 Jun 2023	31 May 2023		
Volatile Petroleum Hydrocar	bons in Water						Method: I	ME-(AU)-[ENV]AN433		
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed		
QR1	SE248198.024	LB281035	23 May 2023	25 May 2023	06 Jun 2023	31 May 2023	06 Jun 2023	01 Jun 2023		

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

OC Pesticides in Soil				Method: MI	E-(AU)-[ENV]AN42(
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Tetrachloro-m-xylene (TCMX) (Surrogate)	BH1M_0.5-0.6	SE248198.001	%	60 - 130%	90
	BH1M_2.0-2.1	SE248198.002	%	60 - 130%	99
	BH2_0.1-0.2	SE248198.003	%	60 - 130%	108
	BH2_1.5-1.6	SE248198.004	%	60 - 130%	104
	BH3_0.20-0.30	SE248198.005	%	60 - 130%	104
	BH4_0.5-0.6	SE248198.006	%	60 - 130%	106
	BH4_2.0-2.1	SE248198.007	%	60 - 130%	108
	BH5_0.60-0.70	SE248198.009	%	60 - 130%	104
	BH5_1.30-1.40	SE248198.010	%	60 - 130%	101
	BH6_0.10-0.20	SE248198.011	%	60 - 130%	103
	BH7_0.5-0.6	SE248198.013	%	60 - 130%	104
	BH7_1.5-1.6	SE248198.014	%	60 - 130%	105
	BH8_0.20-0.30	SE248198.015	%	60 - 130%	98
	BH8_0.90-1.00	SE248198.017	%	60 - 130%	101
	BH9_0.10-0.20	SE248198.018	%	60 - 130%	100
	BH10_0.20-0.30	SE248198.019	%	60 - 130%	100
	BH11_0.50-0.60	SE248198.020	%	60 - 130%	100
	BH12M_0.3-0.4	SE248198.025	%	60 - 130%	103
OP Pesticides in Soil				Method: Mi	E-(AU)-[ENV]AN42
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
2-fluorobiphenyl (Surrogate)	BH1M_0.5-0.6	SE248198.001	%	60 - 130%	83
	BH1M_2.0-2.1	SE248198.002	%	60 - 130%	91
	BH2_0.1-0.2	SE248198.003	%	60 - 130%	85
	BH2_1.5-1.6	SE248198.004	%	60 - 130%	88
	BH3_0.20-0.30	SE248198.005	%	60 - 130%	80
	BH4_0.5-0.6	SE248198.006	%	60 - 130%	83
	BH4_2.0-2.1	SE248198.007	%	60 - 130%	94
	BH5_0.60-0.70	SE248198.009	%	60 - 130%	86
	BH5_1.30-1.40	SE248198.010	%	60 - 130%	89
	BH6_0.10-0.20	SE248198.011	%	60 130%	80
	BH7_0.5-0.6	SE248198.013	%	60 130%	83
	BH2 0 20 0 20	SE240198.014	70	60 130%	03
	BH8_0.90-1.00	SE240198.013	%	60 - 130%	84
	BH9_0.30-1.00	SE248198.018	%	60 - 130%	80
	BH10_0.20-0.30	SE248198 019	%	60 - 130%	87
	BH11_0.50-0.60	SE248198 020	%	60 - 130%	90
	BH12M 0.3-0.4	SE248198.025	%	60 - 130%	80
d14-p-terphenyl (Surrogate)	BH1M 0.5-0.6	SE248198.001	%	60 - 130%	92
	BH1M 2.0-2.1	SE248198.002	%	60 - 130%	98
	BH2 0.1-0.2	SE248198.003	%	60 - 130%	91
	BH2_1.5-1.6	SE248198.004	%	60 - 130%	97
	BH3_0.20-0.30	SE248198.005	%	60 - 130%	89
	BH4_0.5-0.6	SE248198.006	%	60 - 130%	91
	BH4_2.0-2.1	SE248198.007	%	60 - 130%	104
	BH5_0.60-0.70	SE248198.009	%	60 - 130%	95
	BH5_1.30-1.40	SE248198.010	%	60 - 130%	98
	BH6_0.10-0.20	SE248198.011	%	60 - 130%	94
	BH7_0.5-0.6	SE248198.013	%	60 - 130%	92
	BH7_1.5-1.6	SE248198.014	%	60 - 130%	93
	BH8_0.20-0.30	SE248198.015	%	60 - 130%	93
	BH8_0.90-1.00	SE248198.017	%	60 - 130%	94
	BH9_0.10-0.20	SE248198.018	%	60 - 130%	89
	BH10_0.20-0.30	SE248198.019	%	60 - 130%	95
	BH11_0.50-0.60	SE248198.020	%	60 - 130%	94
	BH12M_0.3-0.4	SE248198.025	%	60 - 130%	86
PAH (Polynuclear Aromatic Hydrocarbons) in Soil				Method: MF	E-(AU)-[ENV]AN420
Parameter	Sample Name	Sample Number	Units		

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

PAH (Polynuclear Aromatic Hydrocarbons) in Soil (continued)				Method: ME	E-(AU)-[ENV]AN420
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
2-fluorobiphenyl (Surrogate)	BH1M_0.5-0.6	SE248198.001	%	70 - 130%	83
	BH1M_2.0-2.1	SE248198.002	%	70 - 130%	91
	BH2_0.1-0.2	SE248198.003	%	70 - 130%	85
	BH2_1.5-1.6	SE248198.004	%	70 - 130%	88
	BH3_0.20-0.30	SE248198.005	%	70 - 130%	80
	BH4_0.5-0.6	SE248198.006	%	70 - 130%	83
	BH4_2.0-2.1	SE248198.007	%	70 - 130%	94
	BH5_0.60-0.70	SE248198.009	%	70 - 130%	86
	BH5_1.30-1.40	SE248198.010	%	70 - 130%	89
	BH6_0.10-0.20	SE248198.011	%	70 - 130%	86
	BH7_0.5-0.6	SE248198.013	%	70 - 130%	83
	BH7_1.5-1.6	SE248198.014	%	70 - 130%	83
	BH8_0.20-0.30	SE248198.015	%	70 - 130%	84
	BH8_0.90-1.00	SE248198.017	%	70 - 130%	84
	BH9_0.10-0.20	SE248198.018	%	70 - 130%	80
	BH10_0.20-0.30	SE248198.019	%	70 - 130%	87
	BH11_0.50-0.60	SE248198.020	%	70 - 130%	90
d14 = tempend (Currente)	BH12M_0.3-0.4	SE248198.025	%	70 - 130%	80
d 14-p-terprieriyi (Surrogate)	BH1M_0.5-0.6	SE240198.001	70	70 - 130%	92
	BH1M_2.0-2.1	SE246196.002	70	70 - 130%	90
	BH2 15.16	SE248198.004	/0	70 - 130%	91
	BH3_0.20-0.30	SE248198.004	0/_	70 - 130%	80
	BH4_0.5-0.6	SE248198.006	%	70 - 130%	91
	BH4_2.0-2.1	SE248198.007	%	70 - 130%	104
	BH5_0_60-0_70	SE248198 009	%	70 - 130%	95
	BH5 1.30-1.40	SE248198.010	%	70 - 130%	98
	BH6 0.10-0.20	SE248198.011	%	70 - 130%	94
	BH7 0.5-0.6	SE248198.013	%	70 - 130%	92
	BH7 1.5-1.6	SE248198.014	%	70 - 130%	93
	BH8_0.20-0.30	SE248198.015	%	70 - 130%	93
	BH8_0.90-1.00	SE248198.017	%	70 - 130%	94
	BH9_0.10-0.20	SE248198.018	%	70 - 130%	89
	BH10_0.20-0.30	SE248198.019	%	70 - 130%	95
	BH11_0.50-0.60	SE248198.020	%	70 - 130%	94
	BH12M_0.3-0.4	SE248198.025	%	70 - 130%	86
d5-nitrobenzene (Surrogate)	BH1M_0.5-0.6	SE248198.001	%	70 - 130%	88
	BH1M_2.0-2.1	SE248198.002	%	70 - 130%	95
	BH2_0.1-0.2	SE248198.003	%	70 - 130%	88
	BH2_1.5-1.6	SE248198.004	%	70 - 130%	94
	BH3_0.20-0.30	SE248198.005	%	70 - 130%	86
	BH4_0.5-0.6	SE248198.006	%	70 - 130%	88
	BH4_2.0-2.1	SE248198.007	%	70 - 130%	100
	BH5_0.60-0.70	SE248198.009	%	70 - 130%	91
	BH5_1.30-1.40	SE248198.010	%	70 - 130%	93
	BH6_0.10-0.20	SE248198.011	%	70 - 130%	90
	BH7_0.5-0.6	SE248198.013	%	70 - 130%	87
	BH7_1.5-1.6	SE248198.014	%	70 - 130%	87
	BH8_0.20-0.30	SE248198.015	%	70 - 130%	88
	BH8_0.90-1.00	SE248198.017	%	70 - 130%	88
	BH9_0.10-0.20	5E248198.018	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	70 - 130%	83
	BH10_0.20-0.30	SE248198.019	~ %	70 - 130%	91
		SE240198.020	70	70 420%	94
	D⊓ 12M_0.3-0.4	JE240198.025	70	70 - 130%	63
				Method: ME	-(AU)-[ENV]AN420
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
I UVIX (Surrogate)	BH1M_0.5-0.6	SE248198.001	%	60 - 130%	88

BH1M 2.0-2.1

BH2_0.1-0.2

BH2_1.5-1.6

SE248198.002

SE248198.003

SE248198.004

97

106

101

60 - 130%

60 - 130%

60 - 130%

%

%

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

PCBs in Soil (continued)				Method: M	E-(AU)-[ENV]AN420
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
TCMX (Surrogate)	BH3_0.20-0.30	SE248198.005	%	60 - 130%	101
	BH4_0.5-0.6	SE248198.006	%	60 - 130%	104
	BH4_2.0-2.1	SE248198.007	%	60 - 130%	105
	BH5_0.60-0.70	SE248198.009	%	60 - 130%	101
	BH5_1.30-1.40	SE248198.010	%	60 - 130%	99
	BH6_0.10-0.20	SE248198.011	%	60 - 130%	100
	BH7_0.5-0.6	SE248198.013	%	60 - 130%	101
	BH7_1.5-1.6	SE248198.014	%	60 - 130%	102
	BH8_0.20-0.30	SE248198.015	%	60 - 130%	96
	BH8_0.90-1.00	SE248198.017	%	60 - 130%	98
	BH9_0.10-0.20	SE248198.018	%	60 - 130%	97
	BH10_0.20-0.30	SE248198.019	%	60 - 130%	97
	BH11_0.50-0.60	SE248198.020	%	60 - 130%	97
	BH12M_0.3-0.4	SE248198.025	%	60 - 130%	101
Per- and Polyfluoroalkyl Substances (PFAS) in Solid Samples					Method: MA-1523
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
(13C2_PFTeDA) Isotopically Labelled Internal Recovery Standard	BH6_0.10-0.20	SE248198.011	%	0 - 130%	33
	BH8_0.20-0.30	SE248198.015	%	0 - 130%	65
	BH9_0.10-0.20	SE248198.018	%	0 - 130%	43
	BH10_0.20-0.30	SE248198.019	%	0 - 130%	82
(13C2-4:2 FTS) Isotopically Labelled Internal Recovery Standard	BH6_0.10-0.20	SE248198.011	%	0 - 150%	85
	BH8_0.20-0.30	SE248198.015	%	0 - 150%	121
	BH9_0.10-0.20	SE248198.018	%	0 - 150%	85
	BH10_0.20-0.30	SE248198.019	%	0 - 150%	132
(13C2-6:2 FTS) Isotopically Labelled Internal Recovery Standard	BH6_0.10-0.20	SE248198.011	%	0 - 150%	84
	BH8_0.20-0.30	SE248198.015	%	0 - 150%	104
	BH9_0.10-0.20	SE248198.018	%	0 - 150%	81
	BH10_0.20-0.30	SE248198.019	%	0 - 150%	104
(13C2-8:2 FTS) Isotopically Labelled Internal Recovery Standard	BH6_0.10-0.20	SE248198.011	%	0 - 150%	85
	BH8_0.20-0.30	SE248198.015	%	0 - 150%	79
	BH9_0.10-0.20	SE248198.018	%	0 - 150%	77
	BH10_0.20-0.30	SE248198.019	%	0 - 150%	76
(13C2-PFDoA) Isotopically Labelled Internal Recovery Standard	BH6_0.10-0.20	SE248198.011	%	0 - 150%	77
	BH8_0.20-0.30	SE248198.015	%	0 - 150%	66
	BH9_0.10-0.20	SE248198.018	%	0 - 150%	73
	BH10_0.20-0.30	SE248198.019	%	0 - 150%	81
(13C2-PFHxDA) Isotopically Labelled Internal Recovery Standard	BH6_0.10-0.20	SE248198.011	%	0 - 150%	13
	BH8_0.20-0.30	SE248198.015	%	0 - 150%	83
	BH9_0.10-0.20	SE248198.018	%	0 - 150%	26
	BH10_0.20-0.30	SE248198.019	%	0 - 150%	132
(13C3-PFBS) Isotopically Labelled Internal Recovery Standard	BH6_0.10-0.20	SE248198.011	%	0 - 150%	103
	BH8_0.20-0.30	SE248198.015	%	0 - 150%	135
	BH9_0.10-0.20	SE248198.018	%	0 - 150%	99
	BH10_0.20-0.30	SE248198.019	%	0 - 150%	149
(13C3-PFHxS) Isotopically Labelled Internal Recovery Standard	BH6_0.10-0.20	SE248198.011	%	0 - 150%	113
	BH8_0.20-0.30	SE248198.015	%	0 - 150%	105
	BH9_0.10-0.20	SE248198.018	%	0 - 150%	103
	BH10 0.20-0.30	SE248198.019	%	0 - 150%	90
(13C4 PFOA) Isotopically Labelled Internal Recovery Standard	BH6 0.10-0.20	SE248198.011	%	0 - 150%	110
	BH8 0.20-0.30	SE248198.015	%	0 - 150%	93
	BH9 0.10-0.20	SE248198.018	%	0 - 150%	83
	BH10_0.20-0.30	SE248198.019	%	0 - 150%	93
(13C4-PFBA) Isotopically Labelled Internal Recovery Standard	BH6 0.10-0.20	SE248198.011	%	0 - 150%	101
	BH8_0.20-0.30	SE248198.015	%	0 - 150%	103
	BH9_0.10-0.20	SE248198.018	%	0 - 150%	102
	BH10_0.20-0.30	SE248198.019	%	0 - 150%	99
(13C4-PFHpA) Isotopically Labelled Internal Recovery Standard	BH6 0.10-0.20	SE248198.011	%	0 - 150%	107
	BH8_0.20-0.30	SE248198.015	%	0 - 150%	120
	BH9_0.10-0.20	SE248198.018	%	0 - 150%	95
	BH10 0.20-0.30	SE248198.019	%	0 - 150%	141

Method: MA-1523

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Per- and Polyfluoroalkyl Substances (PFAS) in Solid Samples (continued)

Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
(13C5-PFHxA) Isotopically Labelled Internal Recovery Standard	BH6_0.10-0.20	SE248198.011	%	0 - 150%	101
	BH8_0.20-0.30	SE248198.015	%	0 - 150%	132
	BH9_0.10-0.20	SE248198.018	%	0 - 150%	96
	BH10_0.20-0.30	SE248198.019	%	0 - 150%	150
(13C5-PFPeA) Isotopically Labelled Internal Recovery Standard	BH6_0.10-0.20	SE248198.011	%	0 - 150%	103
	BH8_0.20-0.30	SE248198.015	%	0 - 150%	102
	BH9_0.10-0.20	SE248198.018	%	0 - 150%	104
	BH10_0.20-0.30	SE248198.019	%	0 - 150%	100
(13C6-PFDA) Isotopically Labelled Internal Recovery Standard	BH6_0.10-0.20	SE248198.011	%	0 - 150%	100
	BH8_0.20-0.30	SE248198.015	%	0 - 150%	93
	BH9_0.10-0.20	SE248198.018	%	0 - 150%	111
	BH10_0.20-0.30	SE248198.019	%	0 - 150%	85
(13C7-PFUdA) Isotopically Labelled Internal Recovery Standard	BH6_0.10-0.20	SE248198.011	%	0 - 150%	90
	BH8_0.20-0.30	SE248198.015	%	0 - 150%	69
	BH9_0.10-0.20	SE248198.018	%	0 - 150%	86
	BH10_0.20-0.30	SE248198.019	%	0 - 150%	80
(13C8-PFOS) Isotopically Labelled Internal Recovery Standard	BH6_0.10-0.20	SE248198.011	%	0 - 150%	119
	BH8_0.20-0.30	SE248198.015	%	0 - 150%	93
	BH9_0.10-0.20	SE248198.018	%	0 - 150%	84
	BH10_0.20-0.30	SE248198.019	%	0 - 150%	81
(13C8-PFOSA) Isotopically Labelled Internal Recovery Standard	BH6_0.10-0.20	SE248198.011	%	0 - 150%	94
	BH8_0.20-0.30	SE248198.015	%	0 - 150%	79
	BH9_0.10-0.20	SE248198.018	%	0 - 150%	71
	BH10_0.20-0.30	SE248198.019	%	0 - 150%	61
(13C9-PFNA) Isotopically Labelled Internal Recovery Standard	BH6_0.10-0.20	SE248198.011	%	0 - 150%	97
	BH8_0.20-0.30	SE248198.015	%	0 - 150%	116
	BH9_0.10-0.20	SE248198.018	%	0 - 150%	117
	BH10_0.20-0.30	SE248198.019	%	0 - 150%	96
(D3-N-MeFOSA) Isotopically Labelled Internal Recovery Standard	BH6_0.10-0.20	SE248198.011	%	0 - 150%	50
	BH8_0.20-0.30	SE248198.015	%	0 - 150%	59
	BH9_0.10-0.20	SE248198.018	%	0 - 150%	52
	BH10_0.20-0.30	SE248198.019	%	0 - 150%	41
(D3-N-MeFOSAA) Isotopically Labelled Internal Recovery Standard	BH6_0.10-0.20	SE248198.011	%	0 - 150%	66
	BH8_0.20-0.30	SE248198.015	%	0 - 150%	60
	BH9_0.10-0.20	SE248198.018	%	0 - 150%	55
	BH10_0.20-0.30	SE248198.019	%	0 - 150%	50
(D5-N-EtFOSA) Isotopically Labelled Internal Recovery Standard	BH6_0.10-0.20	SE248198.011	%	0 - 150%	39
	BH8_0.20-0.30	SE248198.015	%	0 - 150%	51
	BH9_0.10-0.20	SE248198.018	%	0 - 150%	43
	BH10_0.20-0.30	SE248198.019	%	0 - 150%	38
(D5-N-EtFOSAA) Isotopically Labelled Internal Recovery Standard	BH6_0.10-0.20	SE248198.011	%	0 - 150%	58
	BH8_0.20-0.30	SE248198.015	%	0 - 150%	68
	BH9_0.10-0.20	SE248198.018	%	0 - 150%	53
	BH10_0.20-0.30	SE248198.019	%	0 - 150%	56
(D7-N-MeFOSE) Isotopically Labelled Internal Recovery Standard	BH6_0.10-0.20	SE248198.011	%	0 - 150%	64
	BH8_0.20-0.30	SE248198.015	%	0 - 150%	90
	BH9_0.10-0.20	SE248198.018	%	0 - 150%	55
	BH10_0.20-0.30	SE248198.019	%	0 - 150%	62
(D9-N-EtFOSE) Isotopically Labelled Internal Recovery Standard	BH6_0.10-0.20	SE248198.011	%	0 - 150%	58
	BH8_0.20-0.30	SE248198.015	%	0 - 150%	67
	BH9_0.10-0.20	SE248198.018	%	0 - 150%	63
	BH10_0.20-0.30	SE248198.019	%	0 - 150%	62
VOC's in Soil				Method: ME	E-(AU)-[ENV]AN433
Paramotor	Samplo Namo	Sample Number	Unite	Critoria	Pacavary %

Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	BH1M_0.5-0.6	SE248198.001	%	60 - 130%	92
	BH1M_2.0-2.1	SE248198.002	%	60 - 130%	89
	BH2_0.1-0.2	SE248198.003	%	60 - 130%	96
	BH2_1.5-1.6	SE248198.004	%	60 - 130%	94
	BH3_0.20-0.30	SE248198.005	%	60 - 130%	89
	BH4_0.5-0.6	SE248198.006	%	60 - 130%	86

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

VOC's in Soil (continued)				Method: ME	-(AU)-[ENV]AN433
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	BH4_2.0-2.1	SE248198.007	%	60 - 130%	92
	BH5_0.60-0.70	SE248198.009	%	60 - 130%	89
	BH5_1.30-1.40	SE248198.010	%	60 - 130%	92
	BH6_0.10-0.20	SE248198.011	%	60 - 130%	96
	BH7_0.5-0.6	SE248198.013	%	60 - 130%	88
	BH7_1.5-1.6	SE248198.014	%	60 - 130%	91
	BH8_0.20-0.30	SE248198.015	%	60 - 130%	92
	BH8_0.90-1.00	SE248198.017	%	60 - 130%	87
	BH9_0.10-0.20	SE248198.018	%	60 - 130%	89
	BH10_0.20-0.30	SE248198.019	%	60 - 130%	91
	BH11_0.50-0.60	SE248198.020	%	60 - 130%	93
	QD1	SE248198.021	%	60 - 130%	94
	1B1	SE248198.022	%	60 - 130%	100
	151	SE248198.023	%	60 - 130%	87
d4.1.2 diableroathana (Surregate)	BH12M_0.3-0.4	SE248198.025	%	60 130%	93
u4-1,2-dichloroethane (Surrogate)	BH1M_0.3-0.0	SE248198.001	76	60 130%	02
	BH1M_2.0-2.1	SE248198.002	76 9/	60 - 130%	86
	BH2 15-16	SE248198.003	78 9/	60 - 130%	84
	BH3 0 20-0 30	SE248198.004	78 9/	60 - 130%	80
	BH4 0.5-0.6	SE248198.005	78 9/	60 - 130%	78
	BH4 2 0-2 1	SE248198.007	78 9/	60 - 130%	82
	BH5_0.60-0.70	SE248198.009	%	60 - 130%	78
	BH5_1.30-1.40	SE248198.010	%	60 - 130%	84
	BH6_0_10-0_20	SE248198.011	%	60 - 130%	87
	BH7_0.5-0.6	SE248198.013	%	60 - 130%	79
	BH7_1.5-1.6	SE248198.014	%	60 - 130%	83
	BH8_0.20-0.30	SE248198.015	%	60 - 130%	83
	BH8 0.90-1.00	SE248198.017	%	60 - 130%	77
	BH9 0.10-0.20	SE248198.018	%	60 - 130%	80
	BH10 0.20-0.30	SE248198.019	%	60 - 130%	83
	BH11 0.50-0.60	SE248198.020	%	60 - 130%	84
	QD1	SE248198.021	%	60 - 130%	85
	TB1	SE248198.022	%	60 - 130%	92
	TS1	SE248198.023	%	60 - 130%	86
	BH12M_0.3-0.4	SE248198.025	%	60 - 130%	84
d8-toluene (Surrogate)	BH1M_0.5-0.6	SE248198.001	%	60 - 130%	86
	BH1M_2.0-2.1	SE248198.002	%	60 - 130%	84
	BH2_0.1-0.2	SE248198.003	%	60 - 130%	92
	BH2_1.5-1.6	SE248198.004	%	60 - 130%	88
	BH3_0.20-0.30	SE248198.005	%	60 - 130%	83
	BH4_0.5-0.6	SE248198.006	%	60 - 130%	82
	BH4_2.0-2.1	SE248198.007	%	60 - 130%	87
	BH5_0.60-0.70	SE248198.009	%	60 - 130%	83
	BH5_1.30-1.40	SE248198.010	%	60 - 130%	88
	BH6_0.10-0.20	SE248198.011	%	60 - 130%	92
	BH7_0.5-0.6	SE248198.013	%	60 - 130%	82
	BH7_1.5-1.6	SE248198.014	%	60 - 130%	87
	BH8_0.20-0.30	SE248198.015	%	60 - 130%	86
	BH8_0.90-1.00	SE248198.017	%	60 - 130%	80
	BH9_0.10-0.20	SE248198.018	%	60 - 130%	83
	BH10_0.20-0.30	SE248198.019	%	60 - 130%	87
	BH11_0.50-0.60	SE248198.020	%	60 - 130%	87
		SE248198.021	%	60 - 130%	89
	181	SE248198.022	%	60 420%	90
		DE240198.023	70	60 420%	00
	DTT12IVI_0.3-0.4	SE240198.025	70	00 - 130%	00
VOCs in Water				Method: ME	-(AU)-[ENV]AN433
Parameter	Sample Name	Sample Number	Units		

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

VOCs in Water (continued)				Method: ME-	(AU)-[ENV]AN433
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	QR1	SE248198.024	%	40 - 130%	85
d4-1,2-dichloroethane (Surrogate)	QR1	SE248198.024	%	40 - 130%	94
d8-toluene (Surrogate)	QR1	SE248198.024	%	40 - 130%	103
Volatile Petroleum Hydrocarbons in Soil				Method: ME-	(AU)-[ENV]AN433
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	BH1M 0.5-0.6	SE248198.001	%	60 - 130%	92
	BH1M 2.0-2.1	SE248198.002	%	60 - 130%	89
	BH2 0.1-0.2	SE248198.003	%	60 - 130%	96
	BH2 1.5-1.6	SE248198.004	%	60 - 130%	94
	BH3 0.20-0.30	SE248198.005	%	60 - 130%	89
	BH4 0.5-0.6	SE248198.006	%	60 - 130%	86
	BH4_2.0-2.1	SE248198.007	%	60 - 130%	92
	BH5_0.60-0.70	SE248198.009	%	60 - 130%	89
	BH5_1.30-1.40	SE248198.010	%	60 - 130%	92
	BH6_0.10-0.20	SE248198.011	%	60 - 130%	96
	BH7_0.5-0.6	SE248198.013	%	60 - 130%	88
	BH7_1.5-1.6	SE248198.014	%	60 - 130%	91
	BH8_0.20-0.30	SE248198.015	%	60 - 130%	92
	BH8_0.90-1.00	SE248198.017	%	60 - 130%	87
	BH9_0.10-0.20	SE248198.018	%	60 - 130%	89
	BH10_0.20-0.30	SE248198.019	%	60 - 130%	91
	BH11_0.50-0.60	SE248198.020	%	60 - 130%	93
	QD1	SE248198.021	%	60 - 130%	94
	BH12M_0.3-0.4	SE248198.025	%	60 - 130%	93
d4-1,2-dichloroethane (Surrogate)	BH1M_0.5-0.6	SE248198.001	%	60 - 130%	82
	BH1M_2.0-2.1	SE248198.002	%	60 - 130%	80
	BH2_0.1-0.2	SE248198.003	%	60 - 130%	86
	BH2_1.5-1.6	SE248198.004	%	60 - 130%	84
	BH3_0.20-0.30	SE248198.005	%	60 - 130%	80
	BH4_0.5-0.6	SE248198.006	%	60 - 130%	78
	BH4_2.0-2.1	SE248198.007	%	60 - 130%	82
	BH5_0.60-0.70	SE248198.009	%	60 - 130%	78
	BH5_1.30-1.40	SE248198.010	%	60 - 130%	84
	BH6_0.10-0.20	SE248198.011	%	60 - 130%	87
	BH7_0.5-0.6	SE248198.013	%	60 - 130%	79
	BH7_1.5-1.6	SE248198.014	%	60 - 130%	83
	BH8_0.20-0.30	SE248198.015	%	60 - 130%	83
	BH8_0.90-1.00	SE248198.017	%	60 - 130%	//
	BH9_0.10-0.20	SE248198.018	%	60 - 130%	80
	BH10_0.20-0.30	SE248198.019	%	60 - 130%	83
	001	SE240 198.U2U		60 - 130%	04
	BH12M 0 3-0 4	SE240 190.021	70	60 - 130%	84
d&-toluene (Surrogate)	BH1M 0 5.0 6	SE248198.023	/0	60 - 130%	86
	BH1M 2 0-2 1	SE248198.001	/0	60 - 130%	84
	BH2 0 1-0 2	SE248198.003		60 - 130%	92
	BH2 15-16	SE248198 004	%	60 - 130%	88
	BH3 0.20-0.30	SE248198.005	%	60 - 130%	83
	BH4 0.5-0.6	SE248198.006	%	60 - 130%	82
	BH4_2.0-2.1	SE248198.007	%	60 - 130%	87
	BH5_0.60-0.70	SE248198.009	%	60 - 130%	83
	BH5_1.30-1.40	SE248198.010	%	60 - 130%	88
	BH6_0.10-0.20	SE248198.011	%	60 - 130%	92
	BH7_0.5-0.6	SE248198.013	%	60 - 130%	82
	BH7_1.5-1.6	SE248198.014	%	60 - 130%	87
	BH8_0.20-0.30	SE248198.015	%	60 - 130%	86
	BH8_0.90-1.00	SE248198.017	%	60 - 130%	80
	BH9_0.10-0.20	SE248198.018	%	60 - 130%	83
	BH10_0.20-0.30	SE248198.019	%	60 - 130%	87
	BH11_0.50-0.60	SE248198.020	%	60 - 130%	87

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Volatile Petroleum Hydrocarbons in Soil (continued)				Method: M	E-(AU)-[ENV]AN433
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
d8-toluene (Surrogate)	QD1	SE248198.021	%	60 - 130%	89
	BH12M_0.3-0.4	SE248198.025	%	60 - 130%	88
Volatile Petroleum Hydrocarbons in Water				Method: M	E-(AU)-[ENV]AN433
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	QR1	SE248198.024	%	40 - 130%	85
d4-1,2-dichloroethane (Surrogate)	QR1	SE248198.024	%	60 - 130%	94
d8-toluene (Surrogate)	QR1	SE248198.024	%	40 - 130%	103

METHOD BLANKS

SE248198 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Mercury (dissolved) in Water			Method: ME-(AU)	-[ENV]AN311(Perth)/AN312
Sample Number	Parameter	Units	LOR	Result
LB281022.001	Mercury	mg/L	0.0001	<0.0001

Mercury in Soil

Mercury in Soil			м	lethod: ME-(AU)-[ENV]AN312
Sample Number	Parameter	Units	LOR	Result
LB280939.001	Mercury	mg/kg	0.05	<0.05

OC Pesticides in Soil

DC Pesticides in Soil				Metho	od: ME-(AU)-[ENV]AN420
Sample Number		Parameter	Units	LOR	Result
LB280936.001		Alpha BHC	mg/kg	0.1	<0.1
		Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1
		Beta BHC	mg/kg	0.1	<0.1
		Lindane (gamma BHC)	mg/kg	0.1	<0.1
		Delta BHC	mg/kg	0.1	<0.1
		Heptachlor	mg/kg	0.1	<0.1
		Aldrin	mg/kg	0.1	<0.1
		Isodrin	mg/kg	0.1	<0.1
		Heptachlor epoxide	mg/kg	0.1	<0.1
		Gamma Chlordane	mg/kg	0.1	<0.1
		Alpha Chlordane	mg/kg	0.1	<0.1
		Alpha Endosulfan	mg/kg	0.2	<0.2
		p,p'-DDE	mg/kg	0.1	<0.1
		Dieldrin	mg/kg	0.2	<0.2
		Endrin	mg/kg	0.2	<0.2
		Beta Endosulfan	mg/kg	0.2	<0.2
		p,p'-DDD	mg/kg	0.1	<0.1
		Endrin aldehyde	mg/kg	0.1	<0.1
		Endosulfan sulphate	mg/kg	0.1	<0.1
		p,p'-DDT	mg/kg	0.1	<0.1
		Endrin ketone	mg/kg	0.1	<0.1
		Methoxychlor	mg/kg	0.1	<0.1
		Mirex	mg/kg	0.1	<0.1
	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	79
OP Pesticides in Soil				Meth	od: ME-(AU)-[ENV]AN420

UP.	Pesu	JOES I	n 301

Sample Number		Parameter	Units	LOR	Result
LB280936.001		Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2
		Bromophos Ethyl	mg/kg	0.2	<0.2
		Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2
		Diazinon (Dimpylate)	mg/kg	0.5	<0.5
		Dichlorvos	mg/kg	0.5	<0.5
		Dimethoate	mg/kg	0.5	<0.5
		Ethion	mg/kg	0.2	<0.2
		Fenitrothion	mg/kg	0.2	<0.2
		Malathion	mg/kg	0.2	<0.2
		Methidathion	mg/kg	0.5	<0.5
		Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2
	Surrogates	2-fluorobiphenyl (Surrogate)	%	-	86
		d14-p-terphenyl (Surrogate)	%	-	94
PAH (Polynuclear Aromatic	Hydrocarbons) in Soil			Meth	od: ME-(AU)-[ENV]AN420
Sample Number		Parameter	Units	LOR	Result
LB280936.001		Naphthalene	mg/kg	0.1	<0.1
		2-methylnaphthalene	mg/kg	0.1	<0.1

1-methylnaphthalene

Acenaphthylene

Acenaphthene

Phenanthrene

Anthracene

Fluorene

<0.1

<0.1

<0.1

<0.1

< 0.1

<0.1

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

0.1

0.1

0.1

0.1

0.1

0.1

METHOD BLANKS

SE248198 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

PAH (Polynuclear Aromatic Hydrocarbons) in Soil (continued) Method: ME-(AU)-[ENV]AN420 Result Sample Number Parameter Units LOR LB280936.001 Fluoranthene 0.1 <0.1 mg/kg Pyrene mg/kg 0.1 < 0.1 0.1 <0.1 Benzo(a)anthracene mg/kg Chrysene 0.1 <0.1 mg/kg Benzo(a)pyrene mg/kg 0 1 <0.1 Indeno(1,2,3-cd)pyrene mg/kg 0.1 <0.1 <0.1 Dibenzo(ah)anthracene 0.1 ma/ka Benzo(ghi)perylene mg/kg 0.1 < 0.1 0.8 <0.8 Total PAH (18) mg/kg Surrogates d5-nitrobenzene (Surrogate) 91 % -2-fluorobiphenyl (Surrogate) % 86 d14-p-terphenyl (Surrogate) % 94 PCBs in Soil Method: ME-(AU)-[ENV]AN420 Sample Numb Units LOR Result Parameter LB280936.001 Arochlor 1016 mg/kg 0.2 < 0.2 Arochlor 1221 0.2 <0.2 mg/kg Arochlor 1232 mg/kg 0.2 < 0.2 Arochlor 1242 0.2 < 0.2 mg/kg Arochlor 1248 0.2 <0.2 mg/kg Arochlor 1254 mg/kg 0.2 < 0.2 Arochlor 1260 0.2 <0.2 mg/kg Arochlor 1262 0.2 <0.2 mg/kg Arochlor 1268 mg/kg 0.2 <0.2 Total PCBs (Arochlors) mg/kg 1 <1 Surrogates TCMX (Surrogate) 77 % Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES Method: ME-(AU)-[ENV]AN040/AN320 Sample Number Parameter LOR Result LB280938-001 Arsenic, As mg/kg 1 <1 Cadmium, Cd 0.3 <0.3 mg/kg Chromium, Cr mg/kg 0.5 < 0.5 Copper, Cu mg/kg 0.5 <0.5 <0.5 Nickel, Ni 0.5 mg/kg Lead, Pb mg/kg 1 <1 <2.0 Zinc, Zn 2 mg/kg Trace Metals (Dissolved) in Water by ICPMS Method: ME-(AU)-[ENV]AN318 Sample Number Units Result Paramet LOR LB281017.001 Arsenic µg/L 1 <1 Cadmium µg/L 0.1 <0.1 Chromium µg/L 1 <1 Copper µg/L 1 <1 Lead <1 µg/L 1 Nickel µg/L 1 <1 Zinc µg/L 5 <5 TRH (Total Recoverable Hydrocarbons) in Soil Method: ME-(AU)-[ENV]AN403 Sample Number Units LOR Result Parameter LB280936.001 TRH C10-C14 mg/kg 20 <20 TRH C15-C28 45 <45 mg/kg TRH C29-C36 45 <45 mg/kg TRH C37-C40 mg/kg 100 <100 TRH C10-C36 Total 110 <110 mg/kg TRH (Total Recoverable Hydrocarbons) in Water Method: ME-(AU)-[ENV]AN403 Sample Number Units Result Parameter I B281023 001 TRH C10-C14 µg/L 50 <50 TRH C15-C28 200 <200 µg/L TRH C29-C36 200 <200 µg/L TRH C37-C40 µg/L 200 <200 Method: ME-(AU)-[ENV]AN433

VOC's in Soil

5/6/2023

Sample Numb

Parameter

Units

LOR

METHOD BLANKS

SE248198 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

VOC's in Soil (continued)

VOC's in Soil (continue	ed)			Metho	od: ME-(AU)-[ENV]AN433
Sample Number		Parameter	Units	LOR	Result
LB280937.001	Monocyclic Aromatic	Benzene	mg/kg	0.1	<0.1
	Hydrocarbons	Toluene	mg/kg	0.1	<0.1
		Ethylbenzene	mg/kg	0.1	<0.1
		m/p-xylene	mg/kg	0.2	<0.2
		o-xylene	mg/kg	0.1	<0.1
	Polycyclic VOCs	Naphthalene (VOC)*	mg/kg	0.1	<0.1
	Surrogates	d4-1,2-dichloroethane (Surrogate)	%	-	93
		d8-toluene (Surrogate)	%	-	99
		Bromofluorobenzene (Surrogate)	%	-	103
	Totals	Total BTEX*	mg/kg	0.6	<0.6
VOCs in Water				Metho	od: ME-(AU)-[ENV]AN433
Sample Number		Parameter	Units	LOR	Result
Sample Number LB281035.001	Monocyclic Aromatic	Parameter Benzene	Units µg/L	LOR 0.5	Result <0.5
Sample Number LB281035.001	Monocyclic Aromatic Hydrocarbons	Parameter Benzene Toluene	Units µg/L µg/L	LOR 0.5 0.5	Result <0.5 <0.5
Sample Number LB281035.001	Monocyclic Aromatic Hydrocarbons	Parameter Benzene Toluene Ethylbenzene	Units µg/L µg/L µg/L	LOR 0.5 0.5 0.5	Result <0.5 <0.5 <0.5
Sample Number LB281035.001	Monocyclic Aromatic Hydrocarbons	Parameter Benzene Toluene Ethylbenzene m/p-xylene	Units µg/L µg/L µg/L µg/L	LOR 0.5 0.5 0.5 1	Result <0.5
Sample Number LB281035.001	Monocyclic Aromatic Hydrocarbons	Parameter Benzene Toluene Ethylbenzene m/p-xylene o-xylene	Units µg/L µg/L µg/L µg/L µg/L	LOR 0.5 0.5 0.5 1 0.5	Result <0.5
Sample Number LB281035.001	Monocyclic Aromatic Hydrocarbons Połycyclic VOCs	Parameter Benzene Toluene Ethylbenzene m/p-xylene o-xylene Naphthalene (VOC)*	Units µg/L µg/L µg/L µg/L µg/L µg/L	LOR 0.5 0.5 1 0.5 1 0.5 0.5	Result <0.5
Sample Number LB281035.001	Monocyclic Aromatic Hydrocarbons Połycyclic VOCs Surrogates	Parameter Benzene Toluene Ethylbenzene m/p-xylene o-xylene Naphthalene (VOC)* d4-1,2-dichloroethane (Surrogate)	Units μg/L μg/L μg/L μg/L μg/L μg/L %	LOR 0.5 0.5 1 0.5 0.5 0.5 -	Result <0.5
Sample Number LB281035.001	Monocyclic Aromatic Hydrocarbons Połycyclic VOCs Surrogates	Parameter Benzene Toluene Ethylbenzene m/p-xylene o-xylene Naphthalene (VOC)* d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate)	Units µg/L µg/L µg/L µg/L µg/L % %	LOR 0.5 0.5 1 0.5 0.5 0.5 0.5 0.5 -	Result <0.5
Sample Number LB281035.001	Monocyclic Aromatic Hydrocarbons Połycyclic VOCs Surrogates	Parameter Benzene Toluene Ethylbenzene m/p-xylene o-xylene Naphthalene (VOC)* d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate)	Units µg/L µg/L µg/L µg/L µg/L % %	LOR 0.5 0.5 1 0.5 0.5 0.5 0.5 - - -	Result <0.5

Sample Number		Parameter	Units	LOR	Result
LB280937.001		TRH C6-C9	mg/kg	20	<20
	Surrogates	d4-1,2-dichloroethane (Surrogate)	%	-	93

Volatile Petroleum Hydrocarbons in Water

Volatile Petroleum Hydr	ocarbons in Water		Meth	od: ME-(AU)-[ENV]AN433	
Sample Number		Parameter	Units	LOR	Result
LB281035.001		TRH C6-C9	μg/L	40	<40
	Surrogates	d4-1,2-dichloroethane (Surrogate)	%	-	97
		d8-toluene (Surrogate)	%	-	75
		Bromofluorobenzene (Surrogate)	%	-	90

DUPLICATES

Method: ME-(AU)-IENVIAN312

Method: ME-(AU)-[ENV]AN002

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may give a different calculated RPD.

Mercury (dissolved) in Water

Mercury (dissolved) in Water						d: ME-(AU)-[I	ENVJAN311(P	erth)/AN312
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE248280.001	LB281022.014	Mercury	µg/L	0.0001	<0.0001	<0.0001	200	0
SE248336.003	LB281022.022	Mercury	µg/L	0.0001	<0.0001	<0.0001	200	0

Mercury in Soil

•								· •
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE248198.011	LB280939.014	Mercury	mg/kg	0.05	<0.05	<0.05	200	0
SE248198.025	LB280939.024	Mercury	mg/kg	0.05	0.07	0.09	93	32

Moisture Content

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE248198.010	LB280940.011	% Moisture	%w/w	1	7.8	10.7	41	32
SE248198.022	LB280940.022	% Moisture	%w/w	1	<1.0	<1.0	200	0
SE248198.025	LB280940.024	% Moisture	%w/w	1	16.1	15.3	36	5

OC Pesticides in Sc	li						Meth	od: ME-(AU)-	ENVJAN42
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE248198.011	LB280936.014		Alpha BHC	mg/kg	0.1	<0.1	<0.1	200	0
			Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	200	0
			Beta BHC	mg/kg	0.1	<0.1	<0.1	200	0
			Lindane (gamma BHC)	mg/kg	0.1	<0.1	<0.1	200	0
			Delta BHC	mg/kg	0.1	<0.1	<0.1	200	0
			Heptachlor	mg/kg	0.1	<0.1	<0.1	200	0
			Aldrin	mg/kg	0.1	<0.1	<0.1	200	0
			Isodrin	mg/kg	0.1	<0.1	<0.1	200	0
			Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	200	0
			Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	200	0
			Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	200	0
			Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	200	0
			o,p'-DDE*	mg/kg	0.1	<0.1	<0.1	200	0
			p,p'-DDE	mg/kg	0.1	<0.1	<0.1	200	0
			Dieldrin	mg/kg	0.2	<0.2	<0.2	200	0
			Endrin	mg/kg	0.2	<0.2	<0.2	200	0
			Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	200	0
			o,p'-DDD*	mg/kg	0.1	<0.1	<0.1	200	0
			p,p'-DDD	mg/kg	0.1	<0.1	<0.1	200	0
			Endrin aldehyde	mg/kg	0.1	<0.1	<0.1	200	0
			Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	200	0
			o,p'-DDT*	mg/kg	0.1	<0.1	<0.1	200	0
			p,p'-DDT	mg/kg	0.1	<0.1	<0.1	200	0
			Endrin ketone	mg/kg	0.1	<0.1	<0.1	200	0
			Methoxychlor	mg/kg	0.1	<0.1	<0.1	200	0
			Mirex	mg/kg	0.1	<0.1	<0.1	200	0
			trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	200	0
			Total CLP OC Pesticides	mg/kg	1	<1	<1	200	0
			Total OC VIC EPA	mg/kg	1	<1	<1	200	0
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.15	0.15	30	5
SE248198.025	LB280936.024		Alpha BHC	mg/kg	0.1	<0.1	<0.1	200	0
			Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	200	0
			Beta BHC	mg/kg	0.1	<0.1	<0.1	200	0
			Lindane (gamma BHC)	mg/kg	0.1	<0.1	<0.1	200	0
			Delta BHC	mg/kg	0.1	<0.1	<0.1	200	0
			Heptachlor	mg/kg	0.1	<0.1	<0.1	200	0
			Aldrin	mg/kg	0.1	<0.1	<0.1	200	0
			Isodrin	mg/kg	0.1	<0.1	<0.1	200	0
			Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	200	0
			Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	200	0
			Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	200	0
			Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	200	0
			o,p'-DDE*	mg/kg	0.1	<0.1	<0.1	200	0

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

DDD is shown in Crean when within suggested exterio or Ded with an encoded resear identifier when exteride suggested exterior D

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may give a different calculated RPD.

OC Pesticides in S	ioil (continued)						Meth	od: ME-(AU)-[ENVJAN420
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE248198.025	LB280936.024		p,p'-DDE	mg/kg	0.1	<0.1	<0.1	200	0
			Dieldrin	mg/kg	0.2	<0.2	<0.2	200	0
			Endrin	mg/kg	0.2	<0.2	<0.2	200	0
			Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	200	0
			o,p'-DDD*	mg/kg	0.1	<0.1	<0.1	200	0
			p,p'-DDD	mg/kg	0.1	<0.1	<0.1	200	0
			Endrin aldehyde	mg/kg	0.1	<0.1	<0.1	200	0
			Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	200	0
			o,p'-DDT*	mg/kg	0.1	<0.1	<0.1	200	0
			p,p'-DDT	mg/kg	0.1	<0.1	<0.1	200	0
			Endrin ketone	mg/kg	0.1	<0.1	<0.1	200	0
			Methoxychlor	mg/kg	0.1	<0.1	<0.1	200	0
			Mirex	mg/kg	0.1	<0.1	<0.1	200	0
			trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	200	0
			Total CLP OC Pesticides	mg/kg	1	<1	<1	200	0
			Total OC VIC EPA	mg/kg	1	<1	<1	200	0
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.15	0.15	30	2

OP Pesticides in	Soil						Meth	nod: ME-(AU)-	(ENVJAN420
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE248198.011	LB280936.014		Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	200	0
			Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	200	0
			Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	200	0
			Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	200	0
			Dichlorvos	mg/kg	0.5	<0.5	<0.5	200	0
			Dimethoate	mg/kg	0.5	<0.5	<0.5	200	0
			Ethion	mg/kg	0.2	<0.2	<0.2	200	0
			Fenitrothion	mg/kg	0.2	<0.2	<0.2	200	0
			Malathion	mg/kg	0.2	<0.2	<0.2	200	0
			Methidathion	mg/kg	0.5	<0.5	<0.5	200	0
			Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	200	0
			Total OP Pesticides*	mg/kg	1.7	<1.7	<1.7	200	0
		Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.4	30	1
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	30	1
SE248198.025	LB280936.024		Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	200	0
			Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	200	0
			Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	200	0
			Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	200	0
			Dichlorvos	mg/kg	0.5	<0.5	<0.5	200	0
			Dimethoate	mg/kg	0.5	<0.5	<0.5	200	0
			Ethion	mg/kg	0.2	<0.2	<0.2	200	0
			Fenitrothion	mg/kg	0.2	<0.2	<0.2	200	0
			Malathion	mg/kg	0.2	<0.2	<0.2	200	0
			Methidathion	mg/kg	0.5	<0.5	<0.5	200	0
			Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	200	0
			Total OP Pesticides*	mg/kg	1.7	<1.7	<1.7	200	0
		Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.5	30	13
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.4	0.5	30	14

PAH (Polynuclear Aromatic Hydrocarbons) in Soil

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE248198.011	LB280936.014	Naphthalene	mg/kg	0.1	<0.1	<0.1	200	0
		2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	200	0
		1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	200	0
		Acenaphthylene	mg/kg	0.1	<0.1	<0.1	200	0
		Acenaphthene	mg/kg	0.1	<0.1	<0.1	200	0
		Fluorene	mg/kg	0.1	<0.1	<0.1	200	0
		Phenanthrene	mg/kg	0.1	<0.1	<0.1	200	0
		Anthracene	mg/kg	0.1	<0.1	<0.1	200	0
		Fluoranthene	mg/kg	0.1	0.2	<0.1	146	43
		Pyrene	mg/kg	0.1	0.2	<0.1	134	53
		Benzo(a)anthracene	ma/ka	0.1	0.1	<0.1	101	8

Method: ME-(AU)-[ENV]AN420

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may give a different calculated RPD.

Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE248198.011	LB280936.014		Chrysene	ma/ka	0.1	0.1	<0.1	200	6
			Benzo(b&i)fluoranthene	ma/ka	0.1	0.2	<0.1	142	47
			Benzo(k)fluoranthene	ma/ka	0.1	<0.1	<0.1	200	0
			Benzo(a)pyrene	ma/ka	0.1	0.1	<0.1	159	33
			Indeno(1,2,3-cd)pyrene	ma/ka	0.1	0.1	<0.1	194	8
			Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(ghi)perylene	mg/kg	0.1	0.1	<0.1	184	13
			Carcinogenic PAHs, BaP TEQ <lor=0*< td=""><td>mg/kg</td><td>0.2</td><td><0.2</td><td><0.2</td><td>200</td><td>0</td></lor=0*<>	mg/kg	0.2	<0.2	<0.2	200	0
			Carcinogenic PAHs, BaP TEQ <lor=lor 2*<="" td=""><td>mg/kg</td><td>0.2</td><td>0.2</td><td><0.2</td><td>122</td><td>17</td></lor=lor>	mg/kg	0.2	0.2	<0.2	122	17
			Carcinogenic PAHs, BaP TEQ <lor=lor*< td=""><td>mg/kg</td><td>0.3</td><td><0.3</td><td><0.3</td><td>123</td><td>0</td></lor=lor*<>	mg/kg	0.3	<0.3	<0.3	123	0
			Total PAH (18)	mg/kg	0.8	1.1	<0.8	48	168 (9)
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.5	0.4	30	0
		-	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.4	30	1
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	30	1
SE248198.025	LB280936.024		Naphthalene	mg/kg	0.1	<0.1	<0.1	200	0
			2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	200	0
			1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	200	0
			Acenaphthylene	mg/kg	0.1	<0.1	<0.1	200	0
			Acenaphthene	mg/kg	0.1	<0.1	<0.1	200	0
			Fluorene	mg/kg	0.1	<0.1	<0.1	200	0
			Phenanthrene	mg/kg	0.1	<0.1	0.1	141	21
			Anthracene	mg/kg	0.1	<0.1	<0.1	200	0
			Fluoranthene	mg/kg	0.1	0.1	0.3	80	72
			Pyrene	mg/kg	0.1	0.1	0.3	74	73
			Benzo(a)anthracene	mg/kg	0.1	<0.1	0.2	112	47
			Chrysene	mg/kg	0.1	<0.1	0.1	122	34
			Benzo(b&j)fluoranthene	mg/kg	0.1	0.1	0.2	95	63
			Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	184	0
			Benzo(a)pyrene	mg/kg	0.1	<0.1	0.2	104	56
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	0.1	133	23
			Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(ghi)perylene	mg/kg	0.1	<0.1	0.1	124	30
			Carcinogenic PAHs, BaP TEQ <lor=0*< td=""><td>mg/kg</td><td>0.2</td><td><0.2</td><td>0.2</td><td>178</td><td>18</td></lor=0*<>	mg/kg	0.2	<0.2	0.2	178	18
			Carcinogenic PAHs, BaP TEQ <lor=lor 2*<="" td=""><td>mg/kg</td><td>0.2</td><td><0.2</td><td>0.3</td><td>108</td><td>36</td></lor=lor>	mg/kg	0.2	<0.2	0.3	108	36
			Carcinogenic PAHs, BaP TEQ <lor=lor*< td=""><td>mg/kg</td><td>0.3</td><td><0.3</td><td>0.3</td><td>113</td><td>12</td></lor=lor*<>	mg/kg	0.3	<0.3	0.3	113	12
			Total PAH (18)	mg/kg	0.8	<0.8	1.7	40	146
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.4	0.5	30	14
			2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.5	30	13
			d14-p-terphenyl (Surrogate)	ma/ka	-	0.4	0.5	30	14

Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE248198.011	LB280936.014		Arochlor 1016	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1221	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1232	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1242	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1248	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1254	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1260	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1262	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1268	mg/kg	0.2	<0.2	<0.2	200	0
			Total PCBs (Arochlors)	mg/kg	1	<1	<1	200	0
		Surrogates	TCMX (Surrogate)	mg/kg	-	0	0	30	5
SE248198.025	LB280936.024		Arochlor 1016	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1221	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1232	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1242	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1248	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1254	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1260	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1262	mg/kg	0.2	<0.2	<0.2	200	0

Method: ME-(AU)-[ENV]AN040/AN320

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may give a different calculated RPD.

PCBs in Soil (cont	tinued)						Meth	od: ME-(AU)-	ENVJAN420
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE248198.025	LB280936.024		Arochlor 1268	mg/kg	0.2	<0.2	<0.2	200	0
			Total PCBs (Arochlors)	mg/kg	1	<1	<1	200	0
		Surrogates	TCMX (Surrogate)	mg/kg	-	0	0	30	2
pH in soil (1:5)							Meth	od: ME-(AU)-	ENVJAN101
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE248198.017	LB281025.018		pН	pH Units	0.1	5.0	5.0	32	1
SE248261.005	LB281025.019		рН	pH Units	0.1	9.9548	10.1446	31	2

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE248198.010	LB280938.014	Arsenic, As	mg/kg	1	9	9	41	3
		Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	200	0
		Chromium, Cr	mg/kg	0.5	8.1	6.6	37	21
		Copper, Cu	mg/kg	0.5	44	34	31	26
		Nickel, Ni	mg/kg	0.5	1.0	<0.5	100	63
		Lead, Pb	mg/kg	1	21	20	35	2
		Zinc, Zn	mg/kg	2	12	8.9	49	30

Trace Metals (Disso	ace Metals (Dissolved) in Water by ICPMS Method: ME-(AU)-[ENV]AN318								
Original	Duplicate	Parameter		Units	LOR	Original	Duplicate	Criteria %	RPD %
SE248280.001	LB281017.014	Arsenic		µg/L	1	<1	<1	200	0
		Cadmium		µg/L	0.1	<0.1	<0.1	200	0
		Chromium		µg/L	1	<1	<1	200	0
		Copper		µg/L	1	440	450	15	2
		Lead		µg/L	1	<1	<1	200	0
		Nickel		µg/L	1	1	1	99	16
		Zinc		µg/L	5	47	50	25	6
SE248336.003	LB281017.021	Arsenic		µg/L	1	<1	<1	200	0
		Cadmium		µg/L	0.1	<0.1	<0.1	200	0
		Chromium		µg/L	1	<1	<1	200	0
		Copper		µg/L	1	<1	<1	200	0
		Lead		µg/L	1	<1	<1	200	0
		Nickel		µg/L	1	<1	<1	200	0
		Zinc		µg/L	5	<5	<5	200	0

TRH (Total Recoverable Hydrocarbons) in Soil

TRH (Total Recov	erable Hydrocarbons) in Soil					Meth	od: ME-(AU)-	(ENVJAN403
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE248198.011	LB280936.014		TRH C10-C14	mg/kg	20	<20	<20	200	0
			TRH C15-C28	mg/kg	45	<45	<45	200	0
			TRH C29-C36	mg/kg	45	<45	<45	171	0
			TRH C37-C40	mg/kg	100	<100	<100	200	0
			TRH C10-C36 Total	mg/kg	110	<110	<110	200	0
			TRH >C10-C40 Total (F bands)	mg/kg	210	<210	<210	200	0
		TRH F Bands	TRH >C10-C16	mg/kg	25	<25	<25	200	0
			TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	200	0
			TRH >C16-C34 (F3)	mg/kg	90	<90	<90	200	0
			TRH >C34-C40 (F4)	mg/kg	120	<120	<120	200	0
SE248198.025	LB280936.024		TRH C10-C14	mg/kg	20	<20	22	184	9
			TRH C15-C28	mg/kg	45	<45	65	143	37
			TRH C29-C36	mg/kg	45	<45	<45	161	0
			TRH C37-C40	mg/kg	100	<100	<100	200	0
			TRH C10-C36 Total	mg/kg	110	<110	<110	200	0
			TRH >C10-C40 Total (F bands)	mg/kg	210	<210	<210	200	0
		TRH F Bands	TRH >C10-C16	mg/kg	25	<25	27	188	9
			TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	27	200	9
			TRH >C16-C34 (F3)	mg/kg	90	<90	<90	184	0
			TRH >C34-C40 (F4)	mg/kg	120	<120	<120	200	0
TRH (Total Recov	erable Hvdrocarbons) in Water					Meth	od: ME-(AU)-	ENVIAN403

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may give a different calculated RPD.

TRH (Total Recove	otal Recoverable Hydrocarbons) in Water (continued) Method: ME-(AU)-[ENV]AN403								
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE248172.013	LB281023.025		TRH C10-C14	µg/L	50	<50	<50	200	0
			TRH C15-C28	µg/L	200	<200	<200	200	0
			TRH C29-C36	µg/L	200	<200	<200	200	0
			TRH C37-C40	μg/L	200	<200	<200	200	0
			TRH C10-C40	μg/L	320	<320	<320	200	0
		TRH F Bands	TRH >C10-C16	µg/L	60	<60	<60	200	0
			TRH >C10-C16 - Naphthalene (F2)	μg/L	60	<60	<60	200	0
			TRH >C16-C34 (F3)	μg/L	500	<500	<500	200	0
			TRH >C34-C40 (F4)	µg/L	500	<500	<500	200	0
VOC's in Soil							Meth	od: ME-(AU)-[ENVJAN433

Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE248198.011	LB280937.015	Monocyclic	Benzene	mg/kg	0.1	<0.1	<0.1	200	0
		Aromatic	Toluene	mg/kg	0.1	<0.1	<0.1	200	0
			Ethylbenzene	mg/kg	0.1	<0.1	<0.1	200	0
			m/p-xylene	mg/kg	0.2	<0.2	<0.2	194	0
			o-xylene	mg/kg	0.1	<0.1	<0.1	174	0
		Polycyclic	Naphthalene (VOC)*	mg/kg	0.1	<0.1	<0.1	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	8.7	9.0	50	4
			d8-toluene (Surrogate)	mg/kg	-	9.2	9.5	50	4
			Bromofluorobenzene (Surrogate)	mg/kg	-	9.6	9.9	50	3
		Totals	Total BTEX*	mg/kg	0.6	<0.6	<0.6	200	0
			Total Xylenes*	mg/kg	0.3	<0.3	<0.3	187	0
SE248198.025	LB280937.032	Monocyclic	Benzene	mg/kg	0.1	<0.1	0	200	0
		Aromatic	Toluene	mg/kg	0.1	<0.1	0.0047773276	200	0
			Ethylbenzene	mg/kg	0.1	<0.1	0.0033527154	200	0
			m/p-xylene	mg/kg	0.2	<0.2	0.0158276015	200	0
			o-xylene	mg/kg	0.1	<0.1	0.0040674648	200	0
		Polycyclic	Naphthalene (VOC)*	mg/kg	0.1	<0.1	0.0045210206	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	8.4	8.6712893044	50	3
			d8-toluene (Surrogate)	mg/kg	-	8.8	9.0782999541	50	3
			Bromofluorobenzene (Surrogate)	mg/kg	-	9.3	9.7594588773	50	5
		Totals	Total BTEX*	mg/kg	0.6	<0.6	0	200	0
			Total Xylenes*	mg/kg	0.3	<0.3	0.0198950663	200	0

VOCs in Water							Meth	nod: ME-(AU)-	ENVJAN433
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE248035.001	LB281035.028	Monocyclic	Benzene	µg/L	0.5	<0.5	<0.5	200	0
		Aromatic	Toluene	µg/L	0.5	<0.5	<0.5	200	0
			Ethylbenzene	µg/L	0.5	<0.5	<0.5	200	0
			m/p-xylene	µg/L	1	<1	<1	200	0
			o-xylene	µg/L	0.5	<0.5	<0.5	200	0
		Polycyclic	Naphthalene (VOC)*	µg/L	0.5	<0.5	<0.5	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	µg/L	-	9.8821643547	9.9	30	0
			d8-toluene (Surrogate)	µg/L	-	7.1135291973	9.7	30	30 ①
			Bromofluorobenzene (Surrogate)	µg/L	-	8.8890744734	9.9	30	11
		Totals	Total BTEX	µg/L	3	<3	<3	200	0
SE248217.001	LB281035.027	Monocyclic	Benzene	µg/L	0.5	<0.5	<0.5	200	0
		Aromatic	Toluene	µg/L	0.5	<0.5	<0.5	200	0
			Ethylbenzene	µg/L	0.5	<0.5	<0.5	200	0
			m/p-xylene	µg/L	1	<1	<1	200	0
			o-xylene	µg/L	0.5	<0.5	<0.5	200	0
		Polycyclic	Naphthalene (VOC)*	µg/L	0.5	<0.5	<0.5	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	µg/L	-	9.5	9.6	30	1
			d8-toluene (Surrogate)	µg/L	-	10.5	10.0	30	5
			Bromofluorobenzene (Surrogate)	µg/L	-	8.1	7.7	30	5
		Totals	Total BTEX	µg/L	3	<3	<3	200	0
Volatile Petroleur	n Hydrocarbons in So	il i					Meth	nod: ME-(AU)-	ENVJAN43
Original	Duplicate		Parameter	Units	LOR				

Original Duplicate Parameter

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may give a different calculated RPD.

Volatile Petroleum Hydrocarbons in Soil (continued)

Method: ME-(AU)-[ENV]AN433

Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE248198.011	LB280937.015		TRH C6-C10	mg/kg	25	<25	<25	200	0
			TRH C6-C9	mg/kg	20	<20	<20	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	8.7	9.0	50	4
			d8-toluene (Surrogate)	mg/kg	-	9.2	9.5	50	4
			Bromofluorobenzene (Surrogate)	mg/kg	-	9.6	9.9	50	3
		VPH F Bands	Benzene (F0)	mg/kg	0.1	<0.1	<0.1	200	0
			TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	200	0
SE248198.025	LB280937.032		TRH C6-C10	mg/kg	25	<25	0	200	0
			TRH C6-C9	mg/kg	20	<20	0	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	8.4	8.6712893044	50	3
			d8-toluene (Surrogate)	mg/kg	-	8.8	9.0782999541	50	3
			Bromofluorobenzene (Surrogate)	mg/kg	-	9.3	9.7594588773	50	5
		VPH F Bands	Benzene (F0)	mg/kg	0.1	<0.1	0	200	0
			TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	0	200	0
Volatile Petroleum	Hydrocarbons in Wat	er					Metho	od: ME-(AU)-	[ENV]AN433
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE248217.001	LB281035.027		TRH C6-C10	μg/L	50	<50	<50	200	0
			TRH C6-C9	µg/L	40	<40	<40	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	µg/L	-	0.0	0.0	30	1
			d8-toluene (Surrogate)	µg/L	-	0.0	0.0	30	5
			Bromofluorobenzene (Surrogate)	µg/L	-	0.0	0.0	30	5
		VPH F Bands	Benzene (F0)	µg/L	0.5	<0.5	<0.5	200	0
			TRH C6-C10 minus BTEX (F1)	µg/L	50	<50	<50	200	0

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Mercury in Soil					N	lethod: ME-(A	U)-[ENV]AN312
Sample Number Para	ameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB280939.002 Mercu	ury	mg/kg	0.05	0.21	0.2	80 - 120	107

OC Pesticides in Se	lic					N	Nethod: ME-(A	U)-[ENV]AN420
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB280936.002		Delta BHC	mg/kg	0.1	0.1	0.2	60 - 140	66
		Heptachlor	mg/kg	0.1	0.1	0.2	60 - 140	72
		Aldrin	mg/kg	0.1	0.1	0.2	60 - 140	70
		Dieldrin	mg/kg	0.2	<0.2	0.2	60 - 140	75
		Endrin	mg/kg	0.2	<0.2	0.2	60 - 140	80
		p,p'-DDT	mg/kg	0.1	0.1	0.2	60 - 140	74
	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.12	0.15	40 - 130	79
OP Pesticides in So	bil					N	Nethod: ME-(A	U)-[ENV]AN420
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB280936.002		Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	1.7	2	60 - 140	83
		Diazinon (Dimpylate)	mg/kg	0.5	1.7	2	60 - 140	83
		Dichlorvos	mg/kg	0.5	1.4	2	60 - 140	69
		Ethion	mg/kg	0.2	1.6	2	60 - 140	80
	Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.5	40 - 130	90
		d14-p-terphenyl (Surrogate)	mg/kg	-	0.4	0.5	40 - 130	87
PAH (Polynuclear A	vromatic Hydroca	arbons) in Soil				N	Method: ME-(A	U)-[ENV]AN420
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB280936.002		Naphthalene	mg/kg	0.1	3.6	4	60 - 140	91
		Acenaphthylene	mg/kg	0.1	3.7	4	60 - 140	93
		Acenaphthene	mg/kg	0.1	3.8	4	60 - 140	95
		Phenanthrene	mg/kg	0.1	3.8	4	60 - 140	95
		Anthracene	mg/kg	0.1	3.8	4	60 - 140	94
		Fluoranthene	mg/kg	0.1	3.7	4	60 - 140	92
		Pyrene	mg/kg	0.1	3.8	4	60 - 140	95
		Benzo(a)pyrene	mg/kg	0.1	3.7	4	60 - 140	93
	Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.4	0.5	40 - 130	89
		2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.5	40 - 130	90
		d14-p-terphenyl (Surrogate)	mg/kg	-	0.4	0.5	40 - 130	87
PCBs in Soil						N	Method: ME-(A	U)-IENVIAN420

PCBs in Soli					N	ietnoa: ME-(A	U)-[ENV]AN42(
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB280936.002	Arochlor 1260	mg/kg	0.2	0.4	0.4	60 - 140	91

pH in soil (1:5)					N	lethod: ME-(A	U)-[ENV]AN101
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB281025.003	рН	pH Units	0.1	7.4	7.415	98 - 102	100

Total Recoverable Elements	in Soil/Waste Solids/Materials by ICPOES				Method:	ME-(AU)-[EN	/JAN040/AN320
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB280938.002	Arsenic, As	mg/kg	1	340	318.22	80 - 120	108
	Cadmium, Cd	mg/kg	0.3	4.0	4.81	70 - 130	83
	Chromium, Cr	mg/kg	0.5	42	38.31	80 - 120	108
	Copper, Cu	mg/kg	0.5	320	290	80 - 120	109
	Nickel, Ni	mg/kg	0.5	200	187	80 - 120	105
	Lead, Pb	mg/kg	1	96	89.9	80 - 120	106
	Zinc, Zn	mg/kg	2	290	273	80 - 120	106
Trace Metals (Dissolved) in V	Vater by ICPMS				N	lethod: ME-(A	U)-[ENV]AN318
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB281017.002	Arsenic	µg/L	1	20	20	80 - 120	101
	Cadmium	µg/L	0.1	20	20	80 - 120	100
	Chromium	µg/L	1	19	20	80 - 120	97

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Trace Metals (Disa	olved) in Water by	ICPMS (continued)					Method: ME-(A	U)-[ENV]AN318
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB281017.002		Copper	µg/L	1	20	20	80 - 120	99
		Lead	µg/L	1	21	20	80 - 120	104
		Nickel	µg/L	1	21	20	80 - 120	103
		Zinc	µg/L	5	20	20	80 - 120	100
TRH (Total Recov	erable Hvdrocarbo	ns) in Soil					Method: ME-(A	U)-IENVIAN40
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB280936.002		TRH C10-C14	ma/ka	20	49	40	60 - 140	122
		TRH C15-C28	 ma/ka	45	45	40	60 - 140	113
		TRH C29-C36	 ma/ka	45	<45	40	60 - 140	95
	TRH F Bands	TBH >C10-C16	ma/ka	25	49	40	60 - 140	121
		TRH >C16-C34 (F3)	ma/ka	90	<90	40	60 - 140	107
		TRH >C34-C40 (F4)	mg/kg	120	<120	20	60 - 140	104
TPH (Total Recov	arable Hydrocarbo	ne) in Water		120	120		Method: ME_(A	
				1.00	D 1			
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB281023.002		IKH C10-C14	 µg/L	50	930	1200	60 - 140	77
		IKH C15-C28	 µg/L	200	1300	1200	60 - 140	105
		IRH C29-C36	µg/L	200	1200	1200	60 - 140	101
	TRH F Bands	TRH >C10-C16	 µg/L	60	1100	1200	60 - 140	89
		TRH >C16-C34 (F3)	 µg/L	500	1300	1200	60 - 140	108
		TRH >C34-C40 (F4)	 µg/L	500	610	600	60 - 140	102
VOC's in Soil						l l	Method: ME-(A	U)-[ENV]AN43
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB280937.002	Monocyclic	Benzene	 mg/kg	0.1	4.5	5	60 - 140	89
	Aromatic	Toluene	mg/kg	0.1	4.3	5	60 - 140	85
		Ethylbenzene	mg/kg	0.1	4.3	5	60 - 140	86
		m/p-xylene	mg/kg	0.2	8.7	10	60 - 140	87
		o-xylene	mg/kg	0.1	4.4	5	60 - 140	88
	Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	9.9	10	70 - 130	99
	Ū	d8-toluene (Surrogate)	mg/kg	-	10.1	10	70 - 130	101
		Bromofluorobenzene (Surrogate)	mg/kg	-	9.9	10	70 - 130	99
VOCs in Water							Method: ME-(A	U)-[ENV]AN43
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recoverv %
L B281035 002	Monocyclic	Benzene	ug/l	0.5	53	45.45	60 - 140	117
20201000.002	Aromatic	Toluene	 µg/L	0.5	53	45.45	60 - 140	116
	/ Tomato	Ethylbenzene	µg/L	0.5	53	45.45	60 - 140	117
			 µg/L	1	110	45.45	60 140	116
			 µg/L	0.5	F2	90.9	60 140	116
	Surragataa	d4.1.2 disblaraethana (Surrageta)	 µg/L	0.5	10.0	45.45	60 140	100
	Sunogates	de toluono (Surrogato)	 µg/L		10.9	10	70 120	109
		Bromofluorobonzono (Surrogato)	 µg/L		10.0	10	70 - 130	100
	I had a seat sea to d	bromonuorobenzene (Surrogale)	µg/L	-	10.9	10	70 - 130	109
Volatile Petroleum	Hydrocarbons in 8	Soll					Method: ME-(A	U)-[ENV]AN43
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB280937.002		TRH C6-C10	 mg/kg	25	83	92.5	60 - 140	89
		TRH C6-C9	 mg/kg	20	74	80	60 - 140	92
	Surrogates	d4-1,2-dichloroethane (Surrogate)	 mg/kg	-	9.9	10	70 - 130	99
		Bromofluorobenzene (Surrogate)	 mg/kg	-	9.9	10	70 - 130	99
	VPH F Bands	TRH C6-C10 minus BTEX (F1)	mg/kg	25	56	62.5	60 - 140	90
Volatile Petroleum	Hydrocarbons in \	Nater				I	Method: ME-(A	U)-[ENV]AN43
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB281035.002		TRH C6-C10	 µg/L	50	890	946.63	60 - 140	94
		TRH C6-C9	µg/L	40	760	818.71	60 - 140	92
	Surrogates	d4-1,2-dichloroethane (Surrogate)	µg/L	-	10.9	10	60 - 140	109
		d8-toluene (Surrogate)	µg/L	-	9.6	10	70 - 130	96
		Bromofluorobenzene (Surrogate)	µg/L	-	10.9	10	70 - 130	109
	VPH F Bands	TRH C6-C10 minus BTEX (F1)	µg/L	50	570	639.67	60 - 140	90

MATRIX SPIKES

SE248198 R0

Method: ME-(AU)-[ENV]AN312

Method: ME-(AU)-[ENV]AN420

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury (dissolv	ed) in Water				Me	thod: ME-(AU)-	[ENV]AN311	(Perth)/AN312
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE248198.024	LB281022.004	Mercury	mg/L	0.0001	0.0021	<0.0001	0.008	102

Mercury in Soil

-								
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE248198.001	LB280939.004	Mercury	mg/kg	0.05	0.22	<0.05	0.2	102

OC Pesticides in Soil

QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE248198.001	LB280936.004		Alpha BHC	mg/kg	0.1	<0.1	<0.1	-	-
			Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	-	-
			Beta BHC	mg/kg	0.1	<0.1	<0.1	-	-
			Lindane (gamma BHC)	mg/kg	0.1	<0.1	<0.1	-	-
			Delta BHC	mg/kg	0.1	0.2	<0.1	0.2	85
			Heptachlor	mg/kg	0.1	0.2	<0.1	0.2	88
			Aldrin	mg/kg	0.1	0.2	<0.1	0.2	84
			Isodrin	mg/kg	0.1	<0.1	<0.1	-	-
			Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	-	-
			Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	-	-
			Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	-	-
			Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	-	-
			o,p'-DDE*	mg/kg	0.1	<0.1	<0.1	-	-
			p,p'-DDE	mg/kg	0.1	<0.1	<0.1	-	-
			Dieldrin	mg/kg	0.2	<0.2	<0.2	0.2	86
			Endrin	mg/kg	0.2	<0.2	<0.2	0.2	93
			Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	-	-
			o,p'-DDD*	mg/kg	0.1	<0.1	<0.1	-	-
			p,p'-DDD	mg/kg	0.1	<0.1	<0.1	-	-
			Endrin aldehyde	mg/kg	0.1	<0.1	<0.1	-	-
			Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	-	-
			o,p'-DDT*	mg/kg	0.1	<0.1	<0.1	-	-
			p,p'-DDT	mg/kg	0.1	0.2	<0.1	0.2	82
			Endrin ketone	mg/kg	0.1	<0.1	<0.1	-	-
			Methoxychlor	mg/kg	0.1	<0.1	<0.1	-	-
			Mirex	ma/ka	0.1	<0.1	<0.1	-	-
			trans-Nonachlor	ma/ka	0.1	<0.1	<0.1	-	-
			Total CLP OC Pesticides	ma/ka	1	1	<1	-	-
			Total OC VIC EPA	ma/ka	1	1	<1	-	-
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	ma/ka	-	0.15	0.14	-	99
OP Pesticides in	Soll			0.0			Mett	od: ME-(Al	
OC Comple	Comple Number		Devenuetov	11,540		Decult	Original	Cuilco	Decover "
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Бріке	Recovery%
SE248198.001	LB280936.004		Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	-	-
			Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	-	-
			Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	1.5	<0.2	2	76
				mg/kg	0.5	1.5	<0.5	2	11
			Dichlorvos	mg/kg	0.5	1.3	<0.5	2	63
			Dimethoate	mg/kg	0.5	<0.5	<0.5	-	-
			Ethion	mg/kg	0.2	1.5	<0.2	2	74
			Fenitrothion	mg/kg	0.2	<0.2	<0.2	-	-
			Malathion	mg/kg	0.2	<0.2	<0.2	-	-
			Methidathion	mg/kg	0.5	<0.5	<0.5	-	-
			Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	-	-
			I otal OP Pesticides*	mg/kg	1.7	5.8	<1.7	-	-
		Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.4	-	85
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.4	0.5	-	82
PAH (Polynuclear	r Aromatic Hydrocarbo	ons) in Soil					Met	nod: ME-(Al	J)-[ENV]AN420

QC Sample Sample Number Parameter Units LOR

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery
E248198.001	LB280936.004	Naphthalene	mg/kg	0.1	3.6	<0.1	4	89
		2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	-	-
		1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	-	-
		Acenaphthylene	mg/kg	0.1	3.6	<0.1	4	90
		Acenaphthene	mg/kg	0.1	3.8	<0.1	4	94
		Fluorene	mg/kg	0.1	<0.1	<0.1	-	-
		Phenanthrene	mg/kg	0.1	3.7	<0.1	4	92
		Anthracene	mg/kg	0.1	3.7	<0.1	4	91
		Fluoranthene	mg/kg	0.1	3.6	<0.1	4	89
		Pyrene	mg/kg	0.1	3.7	<0.1	4	92
		Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	-	-
		Chrysene	ma/ka	0.1	<0.1	<0.1	-	-
		Benzo(b&i)fluoranthene	ma/ka	0.1	<0.1	<0.1		
		Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1		
		Benzo(a)nyrene	mg/kg	0.1	3.6	<0.1	4	80
			mg/kg	0.1	<0.1	<0.1		03
			mg/kg	0.1	<0.1	<0.1		
			під/кд	0.1	~0.1	~0.1		-
		Denzo(gni)peryiene	mg/kg	0.1	×U.1	<u.1< td=""><td></td><td>-</td></u.1<>		-
			TEQ (mg/kg)	0.2	3.6	<0.2		-
		Carcinogenic PAHs, BaP TEQ <lor=lor 2*<="" td=""><td>IEQ (mg/kg)</td><td>0.2</td><td>3.7</td><td><0.2</td><td></td><td>-</td></lor=lor>	IEQ (mg/kg)	0.2	3.7	<0.2		-
		Carcinogenic PAHs, BaP IEQ <lor=lor*< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td>3.7</td><td><0.3</td><td>-</td><td>-</td></lor=lor*<>	TEQ (mg/kg)	0.3	3.7	<0.3	-	-
		I otal PAH (18)	mg/kg	0.8	29	<0.8	-	-
	Surrogate	d5-nitrobenzene (Surrogate)	mg/kg	-	0.4	0.4	-	84
		2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.4	-	85
		d14-p-terphenyl (Surrogate)	mg/kg	-	0.4	0.5	-	82
s in Soil						Met	nod: ME-(Al	J)-[ENV]AN4
Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recover
248198 001	L B280936 004	Arochlor 1016	ma/ka	0.2	<0.2	<0.2	-	-
210100.001	2220000.001	Arochlor 1221	mg/kg	0.2	<0.2	<0.2		
		Arochlor 1221	mg/kg	0.2	<0.2	<0.2		
		Arochior 1232	mg/kg	0.2	<0.2	<0.2		
		Arochior 1242	mg/kg	0.2	<0.2	<0.2		-
			mg/kg	0.2	<0.2	<0.2		-
		Arochioi 1254	mg/kg	0.2	<0.2	<0.2	-	-
			mg/kg	0.2	0.4	<0.2	0.4	98
		Arochior 1262	mg/kg	0.2	<0.2	<0.2		
		Arochlor 1268	mg/kg	0.2	<0.2	<0.2		-
		Total PCBs (Arochlors)	mg/kg	1	<1	<1		-
	Surrogate	s TCMX (Surrogate)	mg/kg	-	0	0		96
I Recoverabl	e Elements in Soil/Waste Solids/	laterials by ICPOES				Method: ME	-(AU)-[ENV]AN040/AN
C Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recover
248198.001	LB280938.004	Arsenic. As	ma/ka	1	49	3	50	92
		Cadmium. Cd	ma/ka	0.3	38	<0.3	50	76
		Chromium, Cr	ma/ka	0.5	56	13	50	87
		Copper. Cu	ma/ka	0.5	140	120	50	 49 @
		Nickel Ni	ma/ka	0.5	50	14	50	و وب ۵۵
		Lead Ph	ma/ka	1	 	6	50	Q2
			mg/kg	- i 	77	40	E0	75
		Lin(0, L11	пулу	2		-10		10
e Metals (Dis	ssolved) in Water by ICPMS					Met	nod: ME-(Al	J)-[ENV]AN
Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recover
48172.013	LB281017.004	Arsenic	μg/L	1	20	-0.018	20	100
		Cadmium	μg/L	0.1	20	0.003	20	99
		Chromium	μg/L	1	20	0.079	20	98
		Copper	ua/L	1	19	0.062	20	97
		Lead	ua/L	1	21	-0,002	20	104
		Nickel		1	20	-0.002	20	101
		Zinc		5	20	0.661	20	
			pg/c	5	20	0.001	20	
(Total Reco	verable Hydrocarbons) in Soil					Met	nod: ME-(Al	J)-[ENV]AN4
<u> </u>					_			

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

QC Sample Sample Number Parameter Units LOR Result Original SE248198.001 LB280936.004 TRH C10-C14 mg/kg 20 54 <20 TRH C10-C14 mg/kg 45 83 <45 TRH C12-C28 mg/kg 45 62 <45 TRH C29-C36 mg/kg 100 <100 <100 TRH C10-C36 Total mg/kg 110 200 <110 TRH C10-C36 Total mg/kg 25 54 <25 TRH >C10-C40 Total (F bands) mg/kg 25 54 <25 TRH >C10-C16 Nap/kg 90 95 <90 TRH >C10-C16-C34 (F3) mg/kg 90 95<<<90 <90 TRH >C34-C40 (F4) mg/kg 0.1 <120 <120 VOC's In Soli Monocyclic Benzene mg/kg 0.1 4.6 <0.1 SE248198.001 LB280937.004 Monocyclic Benzene mg/kg 0.1 4.6 <0.1	I Spike Reco 40 1 40 1 40 7 - - 40 1 - - 40 1 - - 40 1 - - 40 1 - - 40 1 - - 40 1 - - 40 1 - - 40 1 - - Aethod: ME-(AU)-[ENV] I Spike Spike Reco	overy% 127 120 77 - - 25 - 00 -
SE248198.001 LB280936.004 TRH C10-C14 mg/kg 20 54 <20	40 1 40 7 - - 40 1 - 40 1 - - Aethod: ME-(AU)-[ENV]	127 120 77 - - 25 - 00 -
VOC's In Soll Sample Number Parameter Parameter Units LOR Result Original SE248198.001 LB280937.004 Monocyclic Benzene mg/kg 0.1 4.6 <0.1	40 1 40 7 - - 40 1 - - Aethod: ME-(AU)-[ENV] I Spike Reco	120 77 - 25 - 00 -
VC's In Soll SE248198.001 LB280937.004 Monocyclic Aromatic Benzene Enzene mg/kg 0.1 4.6 <0.1 VOC's In Soll CS ample SE248198.001 LB280937.004 Monocyclic m/p-xylene Benzene Benzene mg/kg 0.1 4.6 <0.1	40 7 - - 40 1 - - Aethod: ME-(AU)-[ENV] I Spike Reco	77 - - 25 - 00 -
VOC's in Soll Sample Number Parameter Intervention mg/kg 0.1 4.6 co.1 SE248198.001 LB280937.004 Monocyclic Aromatic Benzene mg/kg 0.1 4.6 co.1 Polycyclic Nonocyclic Benzene mg/kg 0.1 4.6 co.1 Polycyclic Nonocyclic Benzene mg/kg 0.1 4.6 co.1 Polycyclic Naphthalene (VOC)* mg/kg 0.1 4.6 co.1 Polycyclic Naphthalene (VOC)* mg/kg 0.1 4.6 co.1 Polycyclic Naphthalene (VOC)* mg/kg 0.1 4.6 co.1	- - 40 1 - 40 1 - - Aethod: ME-(AU)-[ENV] I Spike Reco	- - 125 - 00 -
VOC's In Soll Sample Number Parameter Units LOR Result Original SE248198.001 LB280937.004 Monocyclic Im/P-xylene Benzene mg/kg 0.1 4.6 <0.1	- 40 1 - 40 1 - Aethod: ME-(AU)-[ENV] I Spike Reco	- - - - 00 -
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	- 40 1 - 40 1 - 40 1 - Vethod: ME-(AU)-[ENV] I Spike Reco	- 25 - 00 -
TRH F TRH >C10-C16 mg/kg 25 54 <25 Bands TRH >C10-C16 - Naphthalene (F2) mg/kg 25 54 <25	40 1 	- 00 -
Bands TRH >C10-C16 - Naphthalene (F2) mg/kg 25 54 <25 TRH >C16-C34 (F3) mg/kg 90 95 <90	- 40 1 - Method: ME-(AU)-[ENV] I Spike Reco	
TRH >C16-C34 (F3) mg/kg 90 95 <90 TRH >C16-C34 (F3) mg/kg 120 <120	40 1 - Vethod: ME-(AU)-[ENV] I Spike Recc	-
VOC's in Soll rmg/kg 120 <120 <120 QC Sample Sample Number Parameter Units LOR Result Original SE248198.001 LB280937.004 Monocyclic Benzene mg/kg 0.1 4.6 <0.1	Nethod: ME-(AU)-[ENV] I Spike Recc	-
VOC's in Soll Sample Number Parameter Units LOR Result Original SE248198.001 LB280937.004 Monocyclic Benzene mg/kg 0.1 4.6 <0.1	Method: ME-(AU)-[ENV] I Spike Reco	
QC Sample Sample Number Parameter Units LOR Result Original SE248198.001 LB280937.004 Monocyclic Aromatic Benzene mg/kg 0.1 4.6 <0.1	l Spike Reco	JAN433
SE248198.001 LB280937.004 Monocyclic Aromatic Benzene mg/kg 0.1 4.6 <0.1 Toluene mg/kg 0.1 4.4 <0.1	r -	overy%
Aromatic Toluene mg/kg 0.1 4.4 <0.1 Ethylbenzene mg/kg 0.1 4.5 <0.1	5 9	91
Ethylbenzene mg/kg 0.1 4.5 <0.1 m/p-xylene mg/kg 0.2 9.0 <0.2	5 8	87
m/p-xylene mg/kg 0.2 9.0 <0.2 o-xylene mg/kg 0.1 4.6 <0.1	5 8	89
o-xylene mg/kg 0.1 4.6 <0.1 Polycyclic Naphthalene (VOC)* mg/kg 0.1 <0.1	10 9	90
Polycyclic Naphthalene (VOC)* mg/kg 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <	5 9	91
Surrogates d4.1.2 dichloroethane (Surrogate) malka 0.0 0.0	-	-
Surroyates <u>u+-1,2-uicinioroeniane (surroyate)</u> ITIg/Kg - 9.2 8.2	10 9	92
d8-toluene (Surrogate) mg/kg - 9.4 8.6	10 9	94
Bromofluorobenzene (Surrogate) mg/kg - 9.3 9.2	10 9	93
Totals Total BTEX* mg/kg 0.6 27 <0.6	-	-
Total Xylenes* mg/kg 0.3 14 <0.3	-	-
VOCs in Water	vethod: ME-(AU)-[ENV]	JAN433
QC Sample Sample Number Parameter Units LOR Result Origina	l Spike Reco	overy%
SE248035.006 LB281035.029 Monocyclic Benzene μg/L 0.5 54 <0.5	45.45 1	19
Aromatic Τοίμερε μg/L 0.5 55 <0.5	45.45 1	21
Ethylbenzene μg/L 0.5 45 <0.5	45.45 1	00
m/p-xylene µg/L 1 88 <1	90.9 9	97
μg/L0.545<0.5	45.45 9	99
Polycyclic Naphthalene (VOC)* μg/L 0.5 52 <0.5	-	-
Surrogates d4-1,2-dichloroethane (Surrogate) µg/L - 11.1 10.10428165	703 - 1	11
d8-toluene (Surrogate) µg/L - 10.9 7.13219717	576 - 1	09
Bromofluorobenzene (Surrogate) μg/L - 8.5 9.02207396/	395 - 8	85
Totals Total BTEX μg/L 3 290 <3	-	-
Volatile Petroleum Hydrocarbons in Soil	vethod: ME-(AU)-[ENV]	JAN433
QC Sample Sample Number Parameter Units LOR Result Origina	l Spike Reco	overy%
SE248198.001 LB280937.004 TRH C6-C10 mg/kg 25 79 <25	92.5 8	85
TRH C6-C9 mg/kg 20 70 <20	80 8	87
Surrogates d4-1,2-dichloroethane (Surrogate) mg/kg - 9.2 8.2	10 9	92
d8-toluene (Surrogate) mg/kg - 9.4 8.6	10 9	94
Bromofluorobenzene (Surrogate) mg/kg - 9.3 9.2	- 9	93
VPH F Benzene (F0) mg/kg 0.1 4.6 <0.1		
Bands TRH C6-C10 minus BTEX (F1) mg/kg 25 52 <25		-

Matrix spike duplicates are calculated as Relative Percent Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

QC Sample Sample Number Parameter

Units LOR

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: https://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover the performance of this service.
- ** Indicative data, theoretical holding time exceeded.
- *** Indicates that both * and ** apply.
- Sample not analysed for this analyte.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- 2 RPD failed acceptance criteria due to sample heterogeneity.
- ③ Results less than 5 times LOR preclude acceptance criteria for RPD.
- ④ Recovery failed acceptance criteria due to matrix interference.
- Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- 6 LOR was raised due to sample matrix interference.
- ¹ LOR was raised due to dilution of significantly high concentration of analyte in sample.
- Image: Image:
- Recovery failed acceptance criteria due to sample heterogeneity.
- [®] LOR was raised due to high conductivity of the sample (required dilution).
- t Refer to relevant report comments for further information.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.

STATEMENT OF QA/QC PERFORMANCE

CLIENT DETAILS		LABORATORY DETAILS	
Contact Client Address	Andrew Schmidt EI AUSTRALIA SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Manager Laboratory Address	Huong Crawford SGS Alexandria Environmental Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 95160722	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	andrew.schmidt@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E25996 Concord Hospital, Concord	SGS Reference	SE248514 R0
Order Number	E25996	Date Received	01 Jun 2023
Samples	7	Date Reported	08 Jun 2023

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met (within the SGS Alexandria Environmental laboratory).

Sample counts by matrix	7 Water	Type of documentation received	COC	
Date documentation received	1/6/2023	Samples received in good order	Yes	
Samples received without headspace	Yes	Sample temperature upon receipt	10.4°C	
Sample container provider	SGS	Turnaround time requested	Standard	
Samples received in correct containers	Yes	Sufficient sample for analysis	Yes	
Sample cooling method	Ice Bricks	Samples clearly labelled	Yes	
Complete documentation received	Yes			

SGS Australia Pty Ltd ABN 44 000 964 278

SAMPLE SUMMARY

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd Alexandria NSW 2015 Alexandria NSW 2015 t +61 2 8594 0400

Australia

Australia

www.sgs.com.au f +61 2 8594 0499

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Mercury (dissolved) in Water						Me	thod: ME-(AU)-[ENV]AN	311(Perth)/AN312	
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed	
BH1M	SE248514.001	LB281263	01 Jun 2023	01 Jun 2023	29 Jun 2023	02 Jun 2023	29 Jun 2023	02 Jun 2023	
BH9M	SE248514.002	LB281263	01 Jun 2023	01 Jun 2023	29 Jun 2023	02 Jun 2023	29 Jun 2023	02 Jun 2023	
BH12M	SE248514.003	LB281263	01 Jun 2023	01 Jun 2023	29 Jun 2023	02 Jun 2023	29 Jun 2023	02 Jun 2023	
GW_QD1	SE248514.004	LB281263	01 Jun 2023	01 Jun 2023	29 Jun 2023	02 Jun 2023	29 Jun 2023	02 Jun 2023	
GW_QR1	SE248514.005	LB281263	01 Jun 2023	01 Jun 2023	29 Jun 2023	02 Jun 2023	29 Jun 2023	02 Jun 2023	
PAH (Polynuclear Aromatic Hydro	ocarbons) in Water						Method: ME-((AU)-[ENV]AN420	
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed	
BH1M	SE248514.001	LB281428	01 Jun 2023	01 Jun 2023	08 Jun 2023	05 Jun 2023	15 Jul 2023	08 Jun 2023	
BH9M	SE248514.002	LB281428	01 Jun 2023	01 Jun 2023	08 Jun 2023	05 Jun 2023	15 Jul 2023	08 Jun 2023	
BH12M	SE248514.003	LB281428	01 Jun 2023	01 Jun 2023	08 Jun 2023	05 Jun 2023	15 Jul 2023	08 Jun 2023	
GW_QD1	SE248514.004	LB281428	01 Jun 2023	01 Jun 2023	08 Jun 2023	05 Jun 2023	15 Jul 2023	08 Jun 2023	
GW_QR1	SE248514.005	LB281428	01 Jun 2023	01 Jun 2023	08 Jun 2023	05 Jun 2023	15 Jul 2023	08 Jun 2023	
Trace Metals (Dissolved) in Wate	r by ICPMS						Method: ME-((AU)-[ENV]AN318	
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed	
BH1M	SE248514.001	LB281319	01 Jun 2023	01 Jun 2023	28 Nov 2023	02 Jun 2023	28 Nov 2023	05 Jun 2023	
вн9м	SE248514.002	LB281319	01 Jun 2023	01 Jun 2023	28 Nov 2023	02 Jun 2023	28 Nov 2023	05 Jun 2023	
BH12M	SE248514.003	LB281319	01 Jun 2023	01 Jun 2023	28 Nov 2023	02 Jun 2023	28 Nov 2023	05 Jun 2023	
GW_QD1	SE248514.004	LB281319	01 Jun 2023	01 Jun 2023	28 Nov 2023	02 Jun 2023	28 Nov 2023	05 Jun 2023	
GW_QR1	SE248514.005	LB281319	01 Jun 2023	01 Jun 2023	28 Nov 2023	02 Jun 2023	28 Nov 2023	05 Jun 2023	
TRH (Total Recoverable Hydrocarbons) in Water Method: ME-(AU)-[ENV]AN403									
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed	
BH1M	SE248514.001	LB281428	01 Jun 2023	01 Jun 2023	08 Jun 2023	05 Jun 2023	15 Jul 2023	08 Jun 2023	
BH9M	SE248514.002	LB281428	01 Jun 2023	01 Jun 2023	08 Jun 2023	05 Jun 2023	15 Jul 2023	08 Jun 2023	
BH12M	SE248514.003	LB281428	01 Jun 2023	01 Jun 2023	08 Jun 2023	05 Jun 2023	15 Jul 2023	08 Jun 2023	
GW_QD1	SE248514.004	LB281428	01 Jun 2023	01 Jun 2023	08 Jun 2023	05 Jun 2023	15 Jul 2023	08 Jun 2023	
GW_QR1	SE248514.005	LB281428	01 Jun 2023	01 Jun 2023	08 Jun 2023	05 Jun 2023	15 Jul 2023	08 Jun 2023	
VOCs in Water							Method: ME-((AU)-[ENV]AN433	
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed	
BH1M	SE248514.001	LB281645	01 Jun 2023	01 Jun 2023	15 Jun 2023	06 Jun 2023	15 Jun 2023	07 Jun 2023	
BH9M	SE248514.002	LB281645	01 Jun 2023	01 Jun 2023	15 Jun 2023	06 Jun 2023	15 Jun 2023	07 Jun 2023	
BH12M	SE248514.003	LB281645	01 Jun 2023	01 Jun 2023	15 Jun 2023	06 Jun 2023	15 Jun 2023	07 Jun 2023	
GW_QD1	SE248514.004	LB281645	01 Jun 2023	01 Jun 2023	15 Jun 2023	06 Jun 2023	15 Jun 2023	07 Jun 2023	
GW_QR1	SE248514.005	LB281645	01 Jun 2023	01 Jun 2023	15 Jun 2023	06 Jun 2023	15 Jun 2023	07 Jun 2023	
GW_QTB1	SE248514.006	LB281645	01 Jun 2023	01 Jun 2023	15 Jun 2023	06 Jun 2023	15 Jun 2023	07 Jun 2023	
GW_QTS1	SE248514.007	LB281645	01 Jun 2023	01 Jun 2023	15 Jun 2023	06 Jun 2023	15 Jun 2023	07 Jun 2023	
Volatile Petroleum Hydrocarbons	in Water						Method: ME-((AU)-[ENV]AN433	
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed	
BH1M	SE248514.001	LB281645	01 Jun 2023	01 Jun 2023	15 Jun 2023	06 Jun 2023	15 Jun 2023	07 Jun 2023	
BH9M	SE248514.002	LB281645	01 Jun 2023	01 Jun 2023	15 Jun 2023	06 Jun 2023	15 Jun 2023	07 Jun 2023	
BH12M	SE248514.003	LB281645	01 Jun 2023	01 Jun 2023	15 Jun 2023	06 Jun 2023	15 Jun 2023	07 Jun 2023	
GW_QD1	SE248514.004	LB281645	01 Jun 2023	01 Jun 2023	15 Jun 2023	06 Jun 2023	15 Jun 2023	07 Jun 2023	
GW_QR1	SE248514.005	LB281645	01 Jun 2023	01 Jun 2023	15 Jun 2023	06 Jun 2023	15 Jun 2023	07 Jun 2023	
GW_QTB1	SE248514.006	LB281645	01 Jun 2023	01 Jun 2023	15 Jun 2023	06 Jun 2023	15 Jun 2023	07 Jun 2023	
GW_QTS1	SE248514.007	LB281645	01 Jun 2023	01 Jun 2023	15 Jun 2023	06 Jun 2023	15 Jun 2023	07 Jun 2023	

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

PAH (Polynuclear Aromatic Hydrocarbons) in Water Method: ME-(AU)-[ENV]AN420 Parameter Recovery % Sample Na Sample Numl Units Criteria 2-fluorobiphenyl (Surrogate) BH1M SE248514.001 % 40 - 130% 45 вн9м SE248514.002 % 40 - 130% 68 BH12M SE248514.003 % 40 - 130% 59 d14-p-terphenyl (Surrogate) BH1M SE248514.001 % 40 - 130% 67 BH9M SE248514.002 % 40 - 130% 92 BH12M SE248514.003 40 - 130% 80 % d5-nitrobenzene (Surrogate) BH1M SE248514 001 % 40 - 130% 41 вн9м SE248514.002 40 - 130% 58 % BH12M SE248514.003 40 - 130% 53 % Method: ME-(AU)-[ENV]AN433 VOCs in Water Parameter Sample Name Sample Number Units Criteria Recovery % Bromofluorobenzene (Surrogate) SE248514.001 BH1M % 40 - 130% 109 BH9M SE248514.002 40 - 130% 107 % BH12M SE248514.003 % 40 - 130% 104 GW_QD1 SE248514.004 % 40 - 130% 103 GW QR1 SE248514.005 % 40 - 130% 105 GW QTB1 SE248514.006 % 40 - 130% 110 105 GW_QTS1 SE248514.007 % 40 - 130% d4-1.2-dichloroethane (Surrogate) BH1M SE248514.001 40 - 130% 107 % BH9M SE248514.002 % 40 - 130% 105 BH12M SE248514.003 % 40 - 130% 109 GW QD1 SE248514.004 40 - 130% 109 % GW_QR1 SE248514.005 % 40 - 130% 103 GW_QTB1 SE248514.006 40 - 130% 105 % GW QTS1 SE248514.007 40 - 130% 102 % d8-toluene (Surrogate) BH1M SE248514.001 % 40 - 130% aa вн9м SE248514.002 % 40 - 130% 98 BH12M SE248514.003 40 - 130% 97 %

Volatile Petroleum Hydrocarbons in Water

Volatile Petroleum Hydrocarbons in Water	tile Petroleum Hydrocarbons in Water Method: ME-(AU)-[ENV]AN433								
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %				
Bromofluorobenzene (Surrogate)	BH1M	SE248514.001	%	40 - 130%	109				
	BH9M	SE248514.002	%	40 - 130%	107				
	BH12M	SE248514.003	%	40 - 130%	104				
	GW_QD1	SE248514.004	%	40 - 130%	103				
	GW_QR1	SE248514.005	%	40 - 130%	105				
d4-1,2-dichloroethane (Surrogate)	BH1M	SE248514.001	%	60 - 130%	107				
	BH9M	SE248514.002	%	60 - 130%	105				
	BH12M	SE248514.003	%	60 - 130%	109				
	GW_QD1	SE248514.004	%	60 - 130%	109				
	GW_QR1	SE248514.005	%	60 - 130%	103				
d8-toluene (Surrogate)	BH1M	SE248514.001	%	40 - 130%	99				
	BH9M	SE248514.002	%	40 - 130%	98				
	BH12M	SE248514.003	%	40 - 130%	97				
	GW_QD1	SE248514.004	%	40 - 130%	97				
	GW_QR1	SE248514.005	%	40 - 130%	98				

SE248514.004

SE248514.005

SE248514.006

SE248514.007

%

%

%

%

40 - 130%

40 - 130%

40 - 130%

40 - 130%

97

98

99

103

GW_QD1

GW_QR1

GW QTB1

GW QTS1

METHOD BLANKS

SE248514 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Mercury (dissolved) in Water Method: ME-(AU)-[ENV]AN311(Perth)						
Sample Number	Parameter	Units	LOR	Result		
LB281263.001	Mercury	mg/L	0.0001	<0.0001		

PAH (Polynuclear Aromatic Hydrocarbons) in Water

PAH (Polynuclear Aromatic Hydrocarbons) in Water			Metho	d: ME-(AU)-[ENV]AN420
Sample Number	Parameter	Units	LOR	Result
LB281428.001	Naphthalene	µg/L	0.1	<0.1
	2-methylnaphthalene	µg/L	0.1	<0.1
	1-methylnaphthalene	µg/L	0.1	<0.1
	Acenaphthylene	µg/L	0.1	<0.1
	Acenaphthene	µg/L	0.1	<0.1
	Fluorene	µg/L	0.1	<0.1
	Phenanthrene	µg/L	0.1	<0.1
	Anthracene	µg/L	0.1	<0.1
	Fluoranthene	µg/L	0.1	<0.1
	Pyrene	µg/L	0.1	<0.1
	Benzo(a)anthracene	µg/L	0.1	<0.1
	Chrysene	µg/L	0.1	<0.1
	Benzo(a)pyrene	µg/L	0.1	<0.1
	Indeno(1,2,3-cd)pyrene	µg/L	0.1	<0.1
	Dibenzo(ah)anthracene	µg/L	0.1	<0.1
	Benzo(ghi)perylene	µg/L	0.1	<0.1
Surrogates	d5-nitrobenzene (Surrogate)	%	-	43
	2-fluorobiphenyl (Surrogate)	%	-	50
	d14-p-terphenyl (Surrogate)	%	-	74

Trace Metals (Dissolved) in Water by ICPMS

Trace Metals (Dissolved) in Water by ICPM	/S		Metho	od: ME-(AU)-[ENV]AN318
Sample Number	Parameter	Units	LOR	Result
LB281319.001	Arsenic	μg/L	1	<1
	Cadmium	μg/L	0.1	<0.1
	Chromium	μg/L	1	<1
	Copper	μg/L	1	<1
	Lead	µg/L	1	<1
	Nickel	µg/L	1	<1
	Zinc	μq/L	5	<5

TRH (Total Recoverable Hydrocarbons) in Water

TRH (Total Recoverable Hydrocarbons) in Water Method: ME-(AU)-[EN			od: ME-(AU)-[ENV]AN403	
Sample Number	Parameter	Units	LOR	Result
LB281428.001	TRH C10-C14	μg/L	50	<50
	TRH C15-C28	µg/L	200	<200
	TRH C29-C36	µg/L	200	<200
	TRH C37-C40	μg/L	200	<200

VOCs in Water				Meth	od: ME-(AU)-[ENV]AN433
Sample Number		Parameter	Units	LOR	Result
LB281645.001	Monocyclic Aromatic	Benzene	μg/L	0.5	<0.5
	Hydrocarbons	Toluene	μg/L	0.5	<0.5
		Ethylbenzene	μg/L	0.5	<0.5
		m/p-xylene	μg/L	1	<1
		o-xylene	μg/L	0.5	<0.5
	Polycyclic VOCs	Naphthalene (VOC)*	μg/L	0.5	<0.5
	Surrogates	d4-1,2-dichloroethane (Surrogate)	%	-	102
		d8-toluene (Surrogate)	%	-	96
		Bromofluorobenzene (Surrogate)	%	-	105
Volatile Petroleum Hydr	ocarbons in Water			Meth	od: ME-(AU)-[ENV]AN433
Sample Number		Parameter	Units	LOR	Result
LB281645.001		TRH C6-C9	μg/L	40	<40
	Surrogates	d4-1,2-dichloroethane (Surrogate)	%	-	102
		d8-toluene (Surrogate)	%	-	96
		Bromofluorobenzene (Surrogate)	%	-	105

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may give a different calculated RPD.

Mercury (dissolved) in Water Method: ME-(AU)-[ENV]AN311(Perth						erth)/AN312		
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE248519.002	LB281263.014	Mercury	µg/L	0.0001	<0.0001	<0.0001	200	195
SE248520.008	LB281263.018	Mercury	µg/L	0.0001	<0.0001	<0.0001	200	0

Matala (Dissalarad) in Mataa hu IODMO

Trace Metals (Dis	solved) in Water by I	CPMS					Met	hod: ME-(AU)-	[ENV]AN318
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE248519.003	LB281319.014		Arsenic	µg/L	1	1	1	87	0
			Cadmium	µg/L	0.1	<0.1	<0.1	200	0
			Chromium	µg/L	1	1	1	101	3
			Copper	µg/L	1	<1	<1	169	0
			Lead	µg/L	1	<1	<1	200	0
			Nickel	µg/L	1	7	7	28	0
			Zinc	µg/L	5	14	14	51	2
SE248562.001	LB281319.018		Arsenic	µg/L	1	<1	<1	165	0
			Cadmium	µg/L	0.1	<0.1	<0.1	200	0
			Chromium	µg/L	1	1	1	100	2
			Copper	µg/L	1	2	2	81	2
			Lead	µg/L	1	<1	<1	200	0
			Nickel	µg/L	1	1	1	84	0
			Zinc	µg/L	5	<5	<5	200	0
TRH (Total Recov	erable Hydrocarbons) in Water					Met	hod: ME-(AU)-	-IENVIAN403
Original	Duplicate	•	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE248514.005	LB281428.028		TBH C10-C14	ug/	50	<50	<50	200	0
02210011000	20201120.020		TBH C15-C28	ps/2	200	<200	<200	200	0
			TBH C29-C36		200	<200	<200	200	0
			TBH C37-C40	ps/2	200	<200	<200	200	0
			TBH C10-C40	ps/2	320	<320	<320	200	0
		TRH E Bands	TBH >C10-C16	ps/2	60	<60	<60	200	0
		Harr Bando	TRH >C10-C16 - Naphthalene (F2)	pg/2	60	<60	<60	200	0
			TBH >C16-C34 (E3)	pg/2	500	<500	<500	200	0
			TBH >C34-C40 (E4)	pg/2	500	<500	<500	200	0
VOCs in Water				F8-			Met	bod: ME_(ALI)-	
Original	Duuliaata		Demonstern	1126-		Oniminal	Dunlingto		
Original	Duplicate	Manager		Units	LOR	Original	Duplicate	Criteria %	RPD %
SE248514.001	LB281645.026	Monocyclic	Benzene	µg/L	0.5	<0.5	<0.5	200	0
		Aromatic	Toluene	μg/L	0.5	0.9	1.0	83	4
			Ethylbenzene	μg/L	0.5	<0.5	<0.5	200	0
			m/p-xylene	μg/L	1	<1	<1	200	0
			o-xylene	µg/L	0.5	<0.5	<0.5	200	0
		Polycyclic	Naphthalene (VOC)*	μg/L	0.5	<0.5	<0.5	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	μg/L	-	10.7	9.6	30	11
			d8-toluene (Surrogate)	μg/L	-	9.9	9.5	30	4
			Bromotiluorobenzene (Surrogate)	µg/L	-	10.9	10.3	30	6
		lotals	I otal BIEX	μg/L	3	<3	<3	200	0
SE248514.002	LB281645.027	Monocyclic	Benzene	μg/L	0.5	<0.5	<0.5	200	0
		Aromatic		μg/L	0.5	6.1	6.1	38	0
			Ethylbenzene	μg/L	0.5	<0.5	<0.5	200	0
			m/p-xylene	μg/L	1	<1	<1	200	0
			o-xylene	µg/L	0.5	<0.5	<0.5	200	0
		Polycyclic	Naphthalene (VOC)*	µg/L	0.5	<0.5	<0.5	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	µg/L	-	10.5	9.7	30	8
			d8-toluene (Surrogate)	µg/L	-	9.8	9.6	30	2

Totals Total BTEX 79 µg/L 3 6 6 0 Volatile Petroleum Hydrocarbons in Water Method: ME-(AU)-[ENV]AN433 Duplicate Criteria % Original Duplicate Parameter Units LOR Original RPD % SE248514.001 LB281645.026 TRH C6-C10 µg/L 50 <50 <50 189 0 TRH C6-C9 40 <40 <40 200 0 µg/L Surrogates d4-1,2-dichloroethane (Surrogate) 10.7 9.6 30 µg/L 11 d8-toluene (Surrogate) µg/L 9.9 9.5 30 4

µg/L

10.7

10.5

30

Bromofluorobenzene (Surrogate)

2

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may give a different calculated RPD.

Volatile Petroleum Hydrocarbons in Water (continued)

Method: ME-(AU)-[ENV]AN433

Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE248514.001	LB281645.026	Surrogates	Bromofluorobenzene (Surrogate)	μg/L	-	10.9	10.3	30	6
		VPH F Bands	Benzene (F0)	μg/L	0.5	<0.5	<0.5	200	0
			TRH C6-C10 minus BTEX (F1)	μg/L	50	<50	<50	194	0
SE248514.002	LB281645.027		TRH C6-C10	C10 µg/L 50 79 130 79 46	46				
			TRH C6-C9	µg/L	40	56	86	86	42
		Surrogates	d4-1,2-dichloroethane (Surrogate)	μg/L	-	10.5	9.7	30	8
			d8-toluene (Surrogate)	μg/L	-	9.8	9.6	30	2
			Bromofluorobenzene (Surrogate)	Surrogate) µg/L	-	10.7	10.5	30	2
		VPH F Bands	Benzene (F0)	μg/L	0.5	<0.5	<0.5	200	0
			TRH C6-C10 minus BTEX (E1)	ua/l	50	73	120	82	49

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

PAH (Polynuclear	Aromatic Hydroca	rbons) in Water				I	Method: ME-(A	\U)-[ENV]AN42 (
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB281428.002		Naphthalene	µg/L	0.1	38	40	60 - 140	95
		Acenaphthylene	µg/L	0.1	48	40	60 - 140	121
		Acenaphthene	µg/L	0.1	47	40	60 - 140	118
		Phenanthrene	µg/L	0.1	50	40	60 - 140	125
		Anthracene	µg/L	0.1	53	40	60 - 140	133
		Fluoranthene	µg/L	0.1	55	40	60 - 140	138
		Pyrene	μg/L	0.1	56	40	60 - 140	139
		Benzo(a)pyrene	µg/L	0.1	52	40	60 - 140	131
	Surrogates	d5-nitrobenzene (Surrogate)	µg/L	-	0.2	0.5	40 - 130	49
		2-fluorobiphenyl (Surrogate)	µg/L	-	0.3	0.5	40 - 130	58
		d14-p-terphenyl (Surrogate)	µg/L	-	0.4	0.5	40 - 130	87
Trace Metals (Diss	olved) in Water by	ICPMS				I	Method: ME-(A	U)-[ENV]AN31
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB281319.002		Arsenic	µg/L	1	22	20	80 - 120	109
		Cadmium	µg/L	0.1	21	20	80 - 120	106
		Chromium	µg/L	1	22	20	80 - 120	108
		Copper	µg/L	1	21	20	80 - 120	105
		Lead	µg/L	1	20	20	80 - 120	100
		Nickel	µg/L	1	22	20	80 - 120	110
		Zinc	µg/L	5	21	20	80 - 120	105
TRH (Total Recove	erable Hydrocarbo	ns) in Water	· · ·				Method: ME-(A	U)-[ENV]AN40
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recoverv %
LB281428.002		TRH C10-C14	ua/L	50	1000	1200	60 - 140	87
		TRH C15-C28	μα/L	200	1200	1200	60 - 140	104
		TRH C29-C36	ug/L	200	1300	1200	60 - 140	105
	TRH F Bands	TRH >C10-C16	ua/L	60	1100	1200	60 - 140	93
		TRH >C16-C34 (F3)	μα/L	500	1300	1200	60 - 140	107
		TRH >C34-C40 (F4)	ua/L	500	650	600	60 - 140	108
VOCs in Water							Method: ME-(A	U)-IENVIAN43
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
L B281645 002	Monocyclic	Benzene		0.5	45	45.45	60 - 140	99
LD201040.002	Aromatic	Toluene	<u>µg/L</u>	0.5	46	45.45	60 - 140	101
	/ tomato	Ethylhenzene	<u>pg/c</u>	0.5	46	45.45	60 - 140	101
		m/n-yylene	<u>pg/c</u>	1	94	90.9	60 - 140	102
			<u>pg/c</u>	0.5	47	45.45	60 - 140	103
	Surrogates	d4-1 2-dichloroethane (Surrogate)	<u> </u>		10.0	10	60 - 140	100
	Sunogates	d8-toluone (Surrogate)	μg/L		11.1	10	70 - 130	111
		Bromofluorobenzene (Surrogate)			10.0	10	70 - 130	100
Volotilo Dotroloum	Hudroosthono in V	Notes	µg/∟		10.0	10		
	nyurocarbons In t	Paramatar	Linita		Booult	Exposted	Critorio	
Sample Number			Units	LUR	Result			Recovery %
LD201043.00Z			µg/L	0	700	940.03	60 440	00
			µg/L	40	700	818.71	60 140	60
	Surrogates	u4-1,2-uichioroetnane (Surrogate)	µg/L	-	10.0	10	70 100	100
			μg/L	-	11.1	10	70 - 130	111
		TDU 00 010 minus DTEX (E1)	µg/L	-	10.0	10	70 - 130	100
	VPH F Bands	IKT UD-UTU MINUS BIEX (FT)	µg/L	50	530	639.67	bu - 140	82

MATRIX SPIKES

Method: ME-(AU)-[ENV]AN318

Method: ME-(AU)-[ENV]AN433

639.67

112

50

0

µg/L

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury (dissolved) in Water Method: ME-(AU)-[ENV]AN311(Pert					1(Perth)/AN312			
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE248497.027	LB281263.004	Mercury	mg/L	0.0001	0.0018	<0.0001	0.008	90

Trace Metals (Dissolved) in Water by ICPMS

OC Samplo	Sample Number	Paramotor	Unite	LOP	Posult	Original	Spiko	Pocovorv%
QC Sample		Falametei	Ullits	LOK	Result	Onginai	эріке	Recovery /6
SE248497.027	LB281319.004	Arsenic	µg/L	1	22	<1	20	109
		Cadmium	μg/L	0.1	21	<0.1	20	106
		Chromium	μg/L	1	22	<1	20	108
		Copper	μg/L	1	21	<1	20	105
		Lead	µg/L	1	20	<1	20	101
		Nickel	µg/L	1	21	<1	20	107
		Zinc	ua/L	5	23	<5	20	96

VOCs in Water

QC Sample	Sample Number	•	Parameter	Units	LOR	Original	Spike	Recovery%
SE248508.001	LB281645.028	Monocyclic	Benzene	μg/L	0.5	0	45.45	101
		Aromatic	Toluene	µg/L	0.5	0.00255782834	45.45	100
			Ethylbenzene	μg/L	0.5	0.00245693472	45.45	104
			m/p-xylene	μg/L	1	0.00629256885	90.9	102
			o-xylene	µg/L	0.5	0.00828518845	45.45	102
		Polycyclic	Naphthalene (VOC)*	μg/L	0.5	0.01167884979	-	-
		Surrogates	d4-1,2-dichloroethane (Surrogate)	μg/L	-	10.75113387777	-	93
			d8-toluene (Surrogate)	μg/L	-	9.75816417905	-	110
			Bromofluorobenzene (Surrogate)	μg/L	-	11.15965161397	-	95
		Totals	Total BTEX	μg/L	3	0	-	-
Volatile Petroleu	ım Hydrocarbons in V	Vater					M	ethod: ME-(AU)
QC Sample	Sample Number		Parameter	Units	LOR	Original	Spike	Recovery%
SE248508.001	LB281645.028		TRH C6-C10	μg/L	50	0	946.63	105
			TRH C6-C9	µg/L	40	0	818.71	105
		Surrogates	d4-1,2-dichloroethane (Surrogate)	μg/L	-	10.75113387777	-	93
			d8-toluene (Surrogate)	μg/L	-	9.75816417905	-	110
			Bromofluorobenzene (Surrogate)	μg/L	-	11.15965161397	-	95
		VPH F	Benzene (F0)	μg/L	0.5	0	-	-

TRH C6-C10 minus BTEX (F1)

Bands

Matrix spike duplicates are calculated as Relative Percent Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spike duplicates were required for this job.

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: https://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover the performance of this service.
- ** Indicative data, theoretical holding time exceeded.
- *** Indicates that both * and ** apply.
- Sample not analysed for this analyte.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- 2 RPD failed acceptance criteria due to sample heterogeneity.
- ③ Results less than 5 times LOR preclude acceptance criteria for RPD.
- ④ Recovery failed acceptance criteria due to matrix interference.
- Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- 6 LOR was raised due to sample matrix interference.
- ¹ LOR was raised due to dilution of significantly high concentration of analyte in sample.
- Image: Image:
- Recovery failed acceptance criteria due to sample heterogeneity.
- [®] LOR was raised due to high conductivity of the sample (required dilution).
- t Refer to relevant report comments for further information.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.

Appendix L – Title Search Documents

Cadastral Records Enquiry Report : Lot 2 DP 1280788

Ref: 1H Hospital Road, Concord West NSW

Locality : CONCORD WEST

LGA : CANADA BAY

Parish : CONCORD

County : CUMBERLAND

Report Generated 11:14:52 AM, 22 May, 2023 Copyright © Crown in right of New South Wales, 2017 This information is provided as a searching aid only.Whilst every endeavour is made to ensure that current map, plan and titling information is accurately reflected, the Registrar General cannot guarantee the information provided. For ALL ACTIVITY PRIOR TO SEPTEMBER 2002 you must refer to the RGs Charting and Reference Maps

Page 1 of 11

 ∞

ω

139098 & LOT 2 IN DP 231732 &	LGA: CANADA BAY	Registere
18 FOLIO 1 TO BE ACQUIRED	Locality : CONCORD WEST	STAR SEL
	Reduction Ratio 1: 500	19/09
	Lengths are in metres.	
		1

Surveyor's Reference: 33907 017 DP 2021M7100 (420) COMP.

ω

		EXIST	<u>TING EASEMENTS</u>
2.4	WIDE	(P)	SUBSTATION PREMISES No. 5417
DE			"HOSPITAL ROAD GROUND FLOOR LEVEL" (AD14438)
		(Q)	EASEMENT FOR ELECTRICITY WORKS (AD14438)
		(R)	RIGHT OF WAY (AD14438)
		(S)	EASEMENT FOR DRAINAGE 3.05 WIDE (J408062)
		(T)	RIGHT OF CARRIAGEWAY VARIABLE WIDTH (DP1158616)
E		(U)	EASEMENT FOR ELECTRICITY AND OTHER PURPOSES
			2 WIDE & VARIABLE WIDTH (DP1158616)
		(V)	EASEMENT FOR ELECTRICITY AND OTHER PURPOSES
			3.3 WIDE (DP1158616)

No.	BEARING	DISTANCE	STATUS
1	253°48'45"	21.39	FMHWM
2	238°25'00"	15.54	FMHWM
3	247°03′05"	19.075	FMHWM
4	308°55'15"	10.49	FMHWM
5	268°29'40"	6.285	FMHWM
6	227°53'40"	3.41	FMHWM
7	244°59'50"	27.81	FMHWM
8	248°44'55"	30.63	FMHWM
9	229°01'10"	7.465	FMHWM
10	229°04'45"	33.615	FMHWM
11	228°11'25"	21.37	FMHWM
12	212°55'25″	24.93	FMHWM
13	224°55'10"	9.145	FMHWM
14	200°33'40"	9.88	FMHWM

39098 & LOT 2 IN DP 231732 &	LGA: CANADA BAY	Registered	
FOLIO 1 TO BE ACQUIRED	Locality : CONCORD WEST	A CAL	DP1280788
	Reduction Ratio 1: 500	19/09/2022	DI 1200700
	Lengths are in metres.		

 ∞

PLAN FORM 6 (2020) WARNING: Creasing or	olding will lead to rejection
DEPOSITED PLAN A	OMINISTRATION SHEET Sheet 1 of 4 sheet(s)
Office Use Only	Office Use Only
Registered: 19/09/2022	DP1280788
Title System: TORRENS	
PLAN OF LOT 20 IN DP 1139098 & LOT 2 IN	LGA: CANADA BAY
DP 231732 & PART OF VOLUME 5018 FOLIO 1	Locality: CONCORD WEST
TO BE ACQUIRED	Parish: CONCORD
	County: CUMBERLAND
Survey Certificate	Crown Lands NSW/Western Lands Office Approval
I, BRETT ANTHONY BURNS WILLIAMS	I, (Authorised Officer) in
of LTS LOCKLEY PO Box 564 St Leonards NSW 1590	approving this plan certify that all necessary approvals in regard to the
a surveyor registered under the Surveying and Spatial Information Act 2002, certify that:	allocation of the land shown herein have been given.
*(a) Th e land shown in the plan was surveyed in accordance with the <i>Surveying and Spatial Information Regulation 2017</i>, is accurate and the survey was completed on 27-05-21	Date:
*(b) The part of the land shown in the plan (excluding boundary lines noted (Z1) & (Z2) on the plan attached) was surveyed in accordance with the <i>Surveying and Spatial Information Regulation</i> 2017, the part surveyed is accurate and the survey was completed on 27-05-21, the part not surveyed was compiled in accordance	Office:
with that Regulation, or	
*(c) The land shown in this plan was compiled in accordance with the Surveying and Spatial Information Regulation 2017.	*Authorised Person/*General Manager/*Registered Certifier, certify that the provisions of s.6.15 of the Environmental Planning and Assessment
Datum Line: 'X' – 'Y'	Act 1979 have been satisfied in relation to the proposed subdivision, new road or reserve set out herein.
Type: ^Urban/* Rural	Signature:
The terrain is "Level-Undulating / "Steep-Mountainous.	Registration number:
Signature: Eftr WWW/ Dated: 24/6/22	Consent Authority:
Surveyor Identification No: 6795	Date of endorsement:
the Surveying and Spatial Information Act 2002	Subdivision Certificate number:
*Strike out inappropriate words.	File number:
**Specify the land actually surveyed or specify any land shown in the plan that is not the subject of the survey.	*Strike through if inapplicable.
Plans used in the preparation of survey/compilation.	Statements of intention to dedicate public roads create public reserves
DP89877 MFB 088/2-6	and drainage reserves, acquire/resume land.
DP2114/5 MFB 161/100-115	EASEMENTS FOR PORDAGES UNDER THE
DP448301 DP909052	HEALTH ADMINISTRATION ACT 1982
DP1139098	
DP1248857	
Surveyor's Reference: 33907 017DP [2021 M 7100 (420) Com?]	Signatures, Seals and Section 88B Statements should appear on PLAN FORM 6A

PLAN FORM 6A (2019) DEPOSITED PLAN AD	DMINISTRATION SHEET Sheet 2 of 4 sheet(s)
Office Use Only Registered: 19/09/2022	Office Use Only
PLAN OF LOT 20 IN DP 1139098 & LOT 2 IN DP 231732 & PART OF VOLUME 5018 FOLIO 1	DP1280788
TO BE ACQUIRED	This sheet is for the provision of the following information as required:
Subdivision Certificate number: Date of Endorsement:	 A schedule of lots and addresses - See 60(c) SSI Regulation 2017 Statements of intention to create and release affecting interests in accordance with section 88B Conveyancing Act 1919 Signatures and seals- see 195D Conveyancing Act 1919 Any information which cannot fit in the appropriate panel of sheet 1 of the administration sheets.
1 NO STREET ADDRESS AVAILABLE	
2 1H HOSPITAL 3 11D NULLAWARRA	AVENUE CONCORD WEST
of the Surveying and Spatial approves the determination o as shown bereon	ance with Part 2 Division 5 Information Regulation 2017 If the FMHWM/MHWM
File: SF2021/160747	Date: 7/07/2022
Ath	Electronic signature of me, Ryan George Fifield, affixed by me on 7 July 2022
Ryan Fifield – Maritime Surve	ey Manager
If space is insufficient use	additional annexure sheet
Surveyor's Reference: 33907 017DP [2021 M 7100 (420) c	[[]

I .	
PLAN FORM 6A (2019) DEPOSITED PLAN AD	MINISTRATION SHEET Sheet 3 of 4 sheet(s)
Office Use Only 19/09/2022 PLAN OF LOT 20 IN DP 1139098 & LOT 2 IN DP 231732 & PART OF VOLUME 5018 FOLIO 1	Office Use Only DP1280788
TO BE ACQUIRED Subdivision Certificate number: Date of Endorsement:	 This sheet is for the provision of the following information as required: A schedule of lots and addresses - See 60(c) SSI Regulation 2017 Statements of intention to create and release affecting interests in accordance with section 88B Conveyancing Act 1919 Signatures and seals- see 195D Conveyancing Act 1919 Any information which cannot fit in the appropriate panel of sheet 1 of the administration sheets.
EXECUTION BY HEALTH ADMINISTRATION CORPO Executed by the Health Administration Corporation ABI through its authorised delegate:	PRATION: N 45 100 538 161
	Electronic signature of me, Rebecca Wark affixed by me, or at my direction, on 10 Dec 2021 (Signature of Delegate) Rebecca Wark (Name of Delegate)
I certify that I am an eligible witness and that the delega Wer audio visual link in accordance with section 14G of the Electronic Transactions Act 2000 (Signature of Witness) Emily Keep (Name of Witness) 608/26B Lord Sheffield Circuit .Pentith.NSW.2750 (Address of Witness) If space is insufficient use a	ate signed in my presence.
Surveyor's Reference: 33907 017DP 72021 Marco (112 -)	และการการการการการการการการการการการการการก

19/09/2022 Office Use Only Registered: PLAN OF LOT 20 IN DP 1139098 & LOT 2 IN DP 23732 & PART OF VOLUME 5018 FOLIO 1 TO BE ACQUIRED Suddivision Certificate number: Suddivision Certificate number: Suddivision Certificate number: Colspan="2">Colspan="2" Colspan="2">Colspan="2" Colspan="2" </th <th>PLAN FORM 6A (2019) DEPOSITED PLAN AD</th> <th>OMINISTRATION SHEET Sheet 4 of 4 sheet(s)</th>	PLAN FORM 6A (2019) DEPOSITED PLAN AD	OMINISTRATION SHEET Sheet 4 of 4 sheet(s)
PLAN OF LOT 20 IN DP 1139098 & LOT 2 IN DP 231732 & PART OF VOLUME 5018 FOLIO 1 TO BE ACQUIRED Subdivision Carlifeste number Bate of Endorsement in the provision of the following information as required: • A subdivision Section 80: Convergancing Act 1919 • Subdivision Section 80: Convergancing Act 1919 • Subdivision Section 80: Convergancing Act 1919 • Subdivision BSC Toursey and go Act 1910 • Subdivision BSC Toursey and go Act 1910 • Subdivision	Office Use Only Registered:	Office Use Only
TO BE ACQUIRED Subdivision-Cartificate number: Signature of Endorsoment: Concentration which cannot fit in the appropriate panel of sheet 1 EXECUTION BY THE PRINCE ALFRED HOSPITAL: Executed by Sydney Local Health District ABN: 17 520 269 052 Unrough its authorised delegate: (Signature of Delegato) The reset Statements (Signature of Witness) Tay: (Address of Witness) (Address of Witness) If space is insufficient use additional annexure sheet	PLAN OF LOT 20 IN DP 1139098 & LOT 2 IN DP 231732 & PART OF VOLUME 5018 FOLIO 1	DP1280788
A schedule of ios and addresses - see why SX Heguman 2017 Subdivision Certificate number: A schedule of ios and addresses - see why SX Heguman 2017 Statements of intention to create and release address in accordance with section BBC Conveganity Add 1919 Any information which cannot fit in the appropriate panel of sheel 1 of the administration sheets. EXECUTION BY THE PRINCE ALFRED HOSPITAL: Executed by Sydney Local Health District ABN: 17 520 269 052 through its authorised delegate: (Signature of Delegate) I certify that I am an eligible witness and that the delegate signed in my presence. (Signature of Witness) May Triang (Name of Witness) May Triang (Name of Witness) I space is insufficient use additional annoxure sheet If space is insufficient use additional annoxure sheet	TO BE ACQUIRED	This sheet is for the provision of the following information as required:
EXECUTION BY THE PRINCE ALFRED HOSPITAL: Executed by Sydney Local Health District ABN: 17 520 269 052 through its authorised delegate: (Signature of Delegate) Teroex Anderson, Chief Scorting, (Name of Delegate) M.G. 22. I certify that I am an eligible witness and that the delegate signed in my presence. (Signature of Witness) Tay Tiang (Name of Witness) Am Pôn pour A (Address of Witness)	Subdivision Certificate number: Date of Endorsement:	 A schedule of lots and addresses - See 60(c) SSI Regulation 2017 Statements of intention to create and release affecting interests in accordance with section 88B Conveyancing Act 1919 Signatures and seals- see 195D Conveyancing Act 1919 Any information which cannot fit in the appropriate panel of sheet 1 of the administration sheets.
Executed by Sydney Local Health District ABN: 17 520 269 052 through its authorised delegate: (Signature of Delegate) Teress Addel San, Chiel Secolino, (Name of Delegate) H.G. 22. I certify that I am an eligible witness and that the delegate signed in my presence. Muse (Signature of Witness) (Name of Witness) (Mame of Witness) (Address of Witness) If space Is insufficient use additional annexure sheet	EXECUTION BY THE PRINCE ALFRED HOSPIT	AL:
If space is insufficient use additional annexure sheet	Executed by Sydney Local Health District ABN: 17 520 through its authorised delegate: I certify that I am an eligible witness and that the deleg (Signature of Witness) (Signature of Witness) (Name of Witness) (Name of Witness) (Address of Witness)	(Signature of Delegate) Eress Anderson, Chief Executive. (Name of Delegate) h.G. 22 ate signed in my presence.
		additional annowing shoot
	If space is insufficient use	additional annexure sheet

NOTE: ENTRIES RULED THROUGH AND AUTHENTICATED BY THE SEAL OF THE REGISTRAR GENERAL ARE CANCELLED.

REGISTERED PROPRIETOR	Lizmine	INSTRUMENT		- ENTERED	Signature of
	NATORE	NOFIBER		1	Registrar General
patriation Commission by Transfer 16216 Required	6.5-19	92			
2014h Administration Corporation by Transfer I463300, Registered 8/7/1993					63)
CANO.			• • • • • • • • • • • • • • • • • • •		
WANNER REAL				-	
2 A *					
SEE Allow	·····				
- noiv Falin					-
<u> </u>					
				nişde da bir başında ba	
· · · · · · · · · · · · · · · · · · ·				· · · ·	
			·····		
SECOND SCHEDULE (continued)		·····			
INSTRUMENT PADTICIII APS	ENTERED	Signature of		CANCEL ATION	
NATURE I NUMBER I DATE		Registrar General	1		
26845 Lease to the Sydney County Council of Substation premises No 5417 as shown in DP 453692 t	porther				
with a right of way and easement for electricity purposes over another part of the land a	nove				
described. Expires 24.6.2006. Registered 4.12 1985					
			·		
US432 Lease to grounds of men of preudises being wewsagency, building wow 67 within the grounds of	Concord		0175570		
<u>Repairiation Condral Hospital. Expires 11-10-1993. Registered 13-11-1989</u>	lding 64		0013512	14.2.1996	
Concord Repartmation General Hospital Hospital 'Doad Concord comprising an area of app	ovimptoly				
	oxtillarety		·		·
82.4 square metres as shown in plan with 0675572. Expires 30-1 1998. Option of renewal 25	rs.				
Registered 14-2-1996					
75573 Lease to Motor Neurone Disease Association of NSW Incorporated being part of building 64	, Concord				
square metres as shown on the plan with 0675573. Expires 30-6-1998. Option of renewal 2	rs.				
Registered 14-2-1996 C]		-1212		
15571 Dente to Dente Proting 1 thinks Plu 1					
To the state of th	roucou				
Lenere Concord, Repartique, on cremercal rispital, Flospital Road Concord. E	Kpires				
29-10-1948 Uption giterewar 2403. Keyistered 14.2.1996				2458537	12-11-1996
03464 Lease to fycamore Ply Limited of Sunte 103, level 1, Medic	al				
	load			1	
Centre, Concord, Repatriation General Hospital, Hospital, K				-	
Contre, Concord, Repatriation General Hospital, Hospital K Concord, Expires 11-12.1998. Option & Lenward 2473. Regi	tered		,		

7

NOTE: ENTRIES RULED THROUGH AND AUTHENTICATED BY THE SEAL OF THE REGISTRAR GENERAL ARE CANCELLED

<u></u>		SECOND SCHEDULE (continued)				
NATURE		- PARTICULARS	ENTERED	Signature of Registrar General	CANCELLATION	
903465 L	ease to Frances	Booth of Suite 106 level 1. Medical Centre,	Concord			20777
R	epatriation Genero	1 Hospital, Hospital Road, Concord. Expires				210784
2	9.10, 1998. Option	of Lenewal 2403. Registered 14.2.1996				210/850
903466 L	ease to Robert	Breit, of Suiti Gol, level 6 Medical (entre			24555
(foncord Repatric	ation General Hospital, Hospital Koad (onCord			
	Expired 29-10-	1998. Option of renewral 2413, Registered				······
	14, 2.1996		······	· · · · · · · · · · · · · · · · · · ·		
1955609	Lease to Eliza	beth Cievrge Peter Maher Joanna Maher	r and			
	Khadra Mulliga	Pty Limited of Switz lol, level 1 Medi	cal			
	Centre, Concord	Kepatriation General Hospital, Hospital	<u>ka</u>			2772621
	LonCord. Expir	es 1.1.1999, Option of tenewal 240, Reg	istered			270,00
	7-3-1996		<u> </u>		·····	1798.224
077010	Lease to Voda	fore My Limited of the area shown Ho	itched			000313
	en the plan w	th 2077010. Expired 11-9-2005. Option of	}		·	
	Herewal 5 year	with a further Option of Signa 1				60000
	Kegistered 1	7-4-1996.				
107844	Lease to Pierre	Henri Chapyis Jony Eyers My Limited L	<u> </u>			
	K Bokey My	Limited, S CA KOOVEY Pty Limited & Cadobo)dra 1			
	1Pty Limited a	Suite 209, Level 2 Medical Centre, Concolo	1			
	Repatriation, C	Reneral Hospital, Hospital Koad (encord, E	Expired			
	11:2-1999. Optio	of the Henewal 24rs. Registered 30-4-1996	<u>~</u>			
07850	Leaso to Peter	stewart. 9 Suite 211, level 2, Medical (Centre			
4 	Concord Kepati	ilation General Hospital Hospital Kod	_cl			
	ConCord. Expi	res 18-1-1999. Option of peneural- renewal	2 /23.			
	Kelistered 3	0 4 - 1996.				
510211 Leas	se to Pfram Pty Limited	or ground floor Pharmacy, Medical Centre, Concord Repatriation	General			N
Hosp	dital, Hospital Road, Co	ndord, Expires 31-10-1999. Option of renewal 2 yrs. Registered	12-11-1990			ř
Reos	se to Suite 100 Medical Atriation General Hospit	Lentre rty. Limited of Suite 100 Ground floor, Medical Centre, al. Hospital Road, Concord. Expires 31-3-1999. Option of renewa	al 2 yrs.			
Regi	istered 12-11-1996.					
760369	LEASE TO SPEECH	BATHOLOGY ASSOCIATION OF AUSTRALIA OF SUITE 516, LEVELS, M	TEDICAL			C
	CENTRE, CONCORD	REPATRIATION GENERAL HOSPITAL HOSPITAL ROAD, CONCORD. EXPLISES &	29-10-1998			
	OSTION OF KENEWAL	2 YEARS. KEGISTERED 31-1-1997				
773831	LEASE TO DR DAVID	R. EISINGER PTY LIMITED OF SOITE 201, LEVEL 2, NEDICAL C	ENTRE			
	PONCORD REPATRIATION	GENERAL HOSPITAL, HOSPITAL ROAD, CONCORD. EXPIRES 19-5-1997. CITION DI	FRENZWAU			······································
	2 YEARS. REGISTERE	31-1-1997.				

	IL (CTA) IL (STA		SECOND SCHEDULE (continued)				7
NATURE		DATE	PARTICULARS	ENTERED	Signature of Registrar General	CANCELLATION	
794855	LEASE TO	JUAN RIVERA	AND WANKE RIVER OF COFFEE SHOP, GROUND FASSE, ILLEWCAL CENTRE,	PONCORD			
	REPATRIATION	GENERAL	HOSPITAL, HOSPITAL ROND, CONCORD. EXPINES 31-1-2002. OPTION OF	RENEWAL			
	5 YEARS.	REGISTERED	31-1-1947				
<u>893534</u>	Lease to Ric	hard Thomato	and Patricia Thornton of Shop 1, part building 71 Conco	A Repatriation			
	General Hosp	ital Hospita	Road Concord West. Expires 30-9-1999. aption of Ren	ural 2 years.			
	Registered	18-3-1997.	, , , , , , , , , , , , , , , , , , , ,	, <i>v</i>			
843535	Geare to Not	ma Carponte	of Shop 1, part building 67 Concord Repatrication General Hos	fital, Hospitak			
	Road Concord	West, Ex	Jeines 30-9-1999. Optim of Renewal 2 years. Registered 18	3-1997.			
198236	lease to M.	ng Ngu, le	er Katekiris, James Coulishaw, Grace Chapman, Gaum	barr,	· · · · · · · · · · · · · · · · · · ·		
	Thelip Barne	s, Brian J.	ones and Charle Mc Donald of Suite 210, Level 2,	Neolical Confr	¢		
	Concord K	patriation	General Hospital, Hospital Road, Concord Bupinos d	9-10-1498.			
	Option of	rcneub/2	years. Registered 23-5-1997.			·····	
060745	Lease to	John 570:	2 of fuite 108, Loud 1, Hedical Centre, Concord le	efriation	· · · · · · · · · · · · · · · · · · ·		
	Guneral Ho:	pital, Hospit	al Kood, Londord. Expires 01-3-2000. Option of rea	wal 2 years.	1005 GATES		
00/0/0	Registered	23-5-1997.	0 colle + to construct				
TUHUGU	Hard to P	Hadik 170	Comen of Moof 2 part building 67 Convore Keptaria	Wh Greneral		·	
	III-2	noppilar D	The concord will one ref there any shace Falses	30 -7-1949			
	Upplich U	il-eneust	2 years Regulared 27-5 1947. 29-1-11912	¥			
				_			
·····.			STAN OF STAN				
		** *	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · ·	• • • • • • • • • • • • • • • •		
			ALL ALL STREET				

				·			
		· · · · · · · · · · · · · · · · · · ·					
	-			+		· · · · · · · · · · · · · · · · · · ·	
		****		-			
	+				· · · · · · · · · · · · · · · · · · ·		
					· · · · · · · · · · · · · · · · · · ·		
	1				······	**** H=?** +# +# ** ** ###############################	

NOTE: ENTRIES RULED THROUGH AND AUTHENTICATED BY SEAL OF THE REGISTRAR GENERAL ARE CANCELLED

and the second second

Area :

Scale: 200 1

Area: 548. 11. 14/2p. Scale: 200 feet to one inch

LAND

SERVICES

NEW SOUTH WALES LAND REGISTRY SERVICES - HISTORICAL SEARCH _____

> SEARCH DATE _____ 22/5/2023 12:00PM

FOLIO: 2/89877

First Title(s): SEE PRIOR TITLE(S) Prior Title(s): VOL 11281 FOL 183

Recorded	Number	Type of Instrument	C.T. Issue
4/7/1997	DP89877	DEPOSITED PLAN	LOT RECORDED FOLIO NOT CREATED
7/7/1997		AMENDMENT: PARISH-COUNTY	
31/7/1997		CONVERTED TO AUTO CONSOL 11281-183	CONSOL CREATED CT NOT ISSUED
27/3/2001	7408114	DEPARTMENTAL DEALING	
2/12/2010	AF915577	EXCISED FROM AUTO CONSOL 11281-183	
2/12/2010	DP1139098	DEPOSITED PLAN	FOLIO CANCELLED

*** END OF SEARCH ***

1H Hospital Road, Concord West NSW PRINTED ON 22/5/2023

NEW SOUTH WALES LAND REGISTRY SERVICES - HISTORICAL SEARCH _____

> SEARCH DATE _____ 22/5/2023 12:00PM

FOLIO: 20/1139098

LAND

SERVICES

First Title(s):		: Title(s):	OLD SYSTEM VOL 1782 FOL 2 VOL 5141 FOL 47	109		
	Prior	Title(s):	2/89877			
Recorde	ed	Number	Type of Instrument	C.T. Issue		
2/12/20	010	DP1139098	DEPOSITED PLAN	FOLIO CREATED EDITION 1		
18/3/20	015	AJ340193	DEPARTMENTAL DEALING			
23/3/20	015	AJ71566	CHANGE OF NAME			
29/2/20	016	AJ592039	LEASE	EDITION 2		
28/2/20	017	AK971351	LEASE			
28/2/20	017	AK971352	SUB-LEASE			
28/2/20	017	AK971502	MORTGAGE OF LEASE			
28/2/20	017	AK971571	CHANGE OF NAME			
28/2/20	017	AM6164	DEPARTMENTAL DEALING			
19/9/20	022	DP1280788	DEPOSITED PLAN	FOLIO CANCELLED		

*** END OF SEARCH ***

1H Hospital Road, Concord West NSW PRINTED ON 22/5/2023

LAND

SERVICES

NEW SOUTH WALES LAND REGISTRY SERVICES - HISTORICAL SEARCH _____

> SEARCH DATE _____ 22/5/2023 12:00PM

FOLIO: 2/1280788

First Title(s): VOL 1782 FOL 109 VOL 5141 FOL 47 OLD SYSTEM Prior Title(s): 20/1139098

Recorded	Number	Type of Instrument	C.T. Issue
19/9/2022	DP1280788	DEPOSITED PLAN	FOLIO CREATED
			EDITION 1

*** END OF SEARCH ***

1H Hospital Road, Concord West NSW PRINTED ON 22/5/2023

REGISTRY Title Search

NEW SOUTH WALES LAND REGISTRY SERVICES - TITLE SEARCH

FOLIO: 2/1280788

LAND

SERVICES

SEARCH DATE	TIME	EDITION NO	DATE
22/5/2023	11:13 AM	1	19/9/2022

LAND

4

LOT 2 IN DEPOSITED PLAN 1280788 AT CONCORD WEST LOCAL GOVERNMENT AREA CANADA BAY PARISH OF CONCORD COUNTY OF CUMBERLAND TITLE DIAGRAM DP1280788

FIRST SCHEDULE

HEALTH ADMINISTRATION CORPORATION

SECOND SCHEDULE (10 NOTIFICATIONS)

- 1 EXCEPTING THE LAND BELOW A DEPTH FROM THE SURFACE OF 15.24 METRES BY THE CROWN GRANT WITHIN THE PART(S) SHOWN SO INDICATED IN THE TITLE DIAGRAM
- 2 J408062 EASEMENT FOR DRAINAGE 3.05 METRE(S) WIDE AFFECTING THE PART(S) SHOWN SO BURDENED IN THE TITLE DIAGRAM
- 3 AA407705 LEASE TO ANZAC HEALTH & MEDICAL RESEARCH FOUNDATION OF BUILDING 2, KNOWN AS THE ANZAC FOUNDATION BUILDING. EXPIRES: 1/12/2027.
 - AC172175 LEASE TO HUTCHISON 3G AUSTRALIA PTY LIMITED OF PART OF THE ROOFTOP, CONCORD REPATRIATION HOSPITAL, 75 HOSPITAL ROAD, CONCORD WEST SHOWN HATCHED IN PLAN WITH AC172175. COMMENCES: 3/2/2020. EXPIRES: 2/2/2025.
 - AC381275 LEASE OF LEASE AC172175 TO H3GA PROPERTIES (NO.3) PTY LIMITED COMMENCES 3/2/2020. EXPIRES: 1/2/2025.
- 5 AD14438 LEASE TO AUSGRID (SEE AJ71566) OF SUBSTATION NO. 5417 SHOWN DESIGNATED (P) TOGETHER WITH RIGHT OF WAY & EASEMENT FOR ELECTRICITY WORKS AFFECTING THE PARTS SHOWN DESIGNATED (R) & (E) IN DP1104757. EXPIRES: 30/11/2031. OPTION OF RENEWAL: 25 YEARS.
 - AK971351 LEASE OF LEASE AD14438 TO BLUE ASSET PARTNER PTY LTD, ERIC ALPHA ASSET CORPORATION 1 PTY LTD, ERIC ALPHA ASSET CORPORATION 2 PTY LTD, ERIC ALPHA ASSET CORPORATION 3 PTY LTD & ERIC ALPHA ASSET CORPORATION 4 PTY LTD EXPIRES: SEE DEALING. CLAUSE 2.3 (b) (ii).
 - AK971352 LEASE OF LEASE AK971351 TO BLUE OP PARTNER PTY LTD, ERIC ALPHA OPERATOR CORPORATION 1 PTY LTD, ERIC ALPHA OPERATOR CORPORATION 2 PTY LTD, ERIC

END OF PAGE 1 - CONTINUED OVER

1H Hospital Road, Concord West NSW

PRINTED ON 22/5/2023

NEW SOUTH WALES LAND REGISTRY SERVICES - TITLE SEARCH

FOLIO: 2/1280788

PAGE 2

SECO	OND SCHEDUI	LE (10 NOTIFICATIONS) (CONTINUED)		
		 ALPHA OPERATOR CORPORATION 3 PTY LTD & ERIC ALPHA OPERATOR CORPORATION 4 PTY LTD EXPIRES: SEE DEALING. CLAUSE 12.1		
	AK9715	502 MORTGAGE OF LEASE AK971351 TO ANZ FIDUCIARY SERVICES PTY LTD		
	AK9715	571 CHANGE OF NAME AFFECTING LEASE AD14438 LESSEE NOW ALPHA DISTRIBUTION MINISTERIAL HOLDING CORPORATION		
6	AE717083	LEASE TO TELSTRA CORPORATION LIMITED OF WORKS AREA, CONCORD HOSPITAL BUILDING 75, ENGINEERING HOSPITAL ROAD, CONCORD WEST SHOWN HATCHED IN PLAN WITH AE717083. EXPIRES: 12/3/2013. OPTION OF RENEWAL: 5 YEARS WITH A FURTHER OPTION OF 5 YEARS.		
7	DP1158616	RIGHT OF CARRIAGEWAY VARIABLE WIDTH AFFECTING THE PART(S) SHOWN SO BURDENED IN THE TITLE DIAGRAM		
8	DP1158616	EASEMENT FOR ELECTRICITY AND OTHER PURPOSES 2 METRE(S) WIDE AND VARIABLE WIDTH AFFECTING THE PART(S) SHOWN SO BURDENED IN THE TITLE DIAGRAM		
9	DP1158616	EASEMENT FOR ELECTRICITY AND OTHER PURPOSES 3.3 METRE(S) WIDE AFFECTING THE PART(S) SHOWN SO BURDENED IN THE TITLE DIAGRAM		
10	АЈ592039	LEASE TO VODAFONE NETWORK PTY LTD OF THE PART SHOWN HATCHED IN PLAN WITH AJ592039. EXPIRES: 11/9/2020. OPTION OF RENEWAL: 5 YEARS AND TWO FURTHER OPTIONS OF 5 YEARS.		
NOTA	NOTATIONS			

DP1139098 PLAN OF PROPOSED EASEMENT

UNREGISTERED DEALINGS: L AS788012.

*** END OF SEARCH ***

1H Hospital Road, Concord West NSW

PRINTED ON 22/5/2023

* Any entries preceded by an asterisk do not appear on the current edition of the Certificate of Title. Warning: the information appearing under notations has not been formally recorded in the Register. InfoTrack an approved NSW Information Broker hereby certifies that the information contained in this document has been provided electronically by the Registrar General in accordance with Section 96B(2) of the Real Property Act 1900.